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Boundary integral methods have been used widely for the simulation of interfacial flows. They
are Lagrangian free surface representations that reduce the problem to one defined solely on the
fluid interface. In particular, in either inviscid flow or in Stokes flow, the fluid velocity is given by
integrals whose domain is the interface. Boundary integral methods consist of approximating these
integrals and evolving the interface with the approximate velocity.

In planar and axisymmetric geometries the surfaces are represented by a curve in the plane.
Let (x(α, t), y(α, t)), α ∈ [a, b] be a parametrization of this curve. Then the interface velocity at
α = αj is given by

dx

dt
(αj , t) =

∫ b

a

Gu(α,αj , t)dα

dy

dt
(αj , t) =

∫ b

a

Gv(α,αj , t)dα

(1)

for some functions Gu, Gv that are generally singular at α = αj and whose precise form depends on
the fluid under consideration, the properties at the interface, and the geometry. The integrals on
the right hand side of (1) are usually approximated using a generalized trapezoid rule [1] based on a
uniform discretization of the curve. For planar smooth interfaces, the integrals can be approximated
with spectral accuracy (see eg, [2-5]) However, for axisymmetric surfaces that cross the axis of
symmetry, a complication occurs that is not present in the planar case. The integrands Gu,v have
large variations which make it difficult to evaluate the velocity accurately [3,6,7]. For definiteness,
suppose the parameter values α = a, b denote those points on the interface that lie on the axis of
symmetry. In [8], we showed that as α,αj → a, b the derivatives of G at the endpoints α = a, b

grow unboundedly in such a way that high order quadratures have maximum errors of, at best,
first order accuracy in the case of inviscid flow, and second order accuracy in the case of Stokes flow
[8,9,10]. That is, these quadrature rules are pointwise of high order accuracy, but not uniformly
for all αj ∈ [a, b]. As a result, large errors introduced near the axis of symmetry contaminate the
overall results.

We note that the singularity of the integrands at the axis of symmetry is introduced solely by
the singular behaviour of the axisymmetric coordinate system on the axis.

We resolve the difficulty described above using the approach presented in [8] and [10]. In
those papers we find, using asymptotic analysis, that the integrand can be approximated near
the axis by functions which capture the singular behaviour and are, up to constant multipliers,
time-independent. For example, for α,αj ≈ a,

G(α,αj , t) ≈ B(α,αj , t) = b0(t)B0

( α

αj

) + α2

j

3
∑

k=1

bk(t)Bk

( α

αj

)

+ O
(

(α − a)4, (αj − a)4
)

for inviscid flow [8], and

G(α,αj , t) ≈ B(α,αj , t) = αjb1(t)B0
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(
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for Stokes flow [10], where all coefficients bk(t) and functions Bk(η) are obtained by the asymptotic
expansion. Using these approximations, we can compute time-independent corrections that elim-
inate the large errors introduced near the axis and enable uniformly accurate simulations, at no
additional cost per time-step.

The resulting uniform quadrature rules in inviscid flow have been applied to resolve singularity
formation in axisymmetric vortex sheet flow [9], capillary pinchoff in a soapfilm model [11], and
Hele-Shaw flow with suction [12]. In this paper we apply the uniform approximations in Stokes
flow to resolve (1) bubble pinchoff and (2) steady state solutions, using efficient and accurate
computations.
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