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downstream of the projectile forebody.  A gray 
estimated projectile position is superimposed 
over the images.  The two initially small 
cavities remain stable for some time (images A-
F) until they spontaneously grow into the fully 
developed supercavity (image J).  We term the 
nondimensional time that signifies this 
spontaneous cavity growth as Critical 
Supercavity Growth Time (CSGT) and is based 
on Equation 1, however is now the running 
mean projectile speed. 

The typical governing parameters that 
describe supercavity development are the 
cavitation index and the Reynolds number.  In 
order to determine the dependence of the CSGT 
against viscous and pressure effects the ratio of 
these parameters was plotted for all test cases 
and is shown in Figure 2 against the CSGT.  We see that CSGT is practically independent to this 
dimensionless parameter that scales the pressure, inertia and viscous effects.  The bulk of the test cases 
had a CSGT between 3.5 and 4.5, similar to the results reported in the literature for pinch-off of the vortex 
ring.  Figure 2 suggests there is a limiting characteristic of the vortex ring generated during projectile 
launch that governs the CSGT. 

The vortex ring generated during impulsive launch of the projectiles plays a key role in the supercavity 
development.  As flow stagnates on the forebody of the projectile and separates from the sharp corner 
small nuclei are entrained in the resulting vortex ring.  As the circulation in the vortex ring increases, 
cavitation inception occurs and a stable bubble appears in the core of the vortex ring.  This is an 
equilibrium state until a critical vortex circulation is exceeded inducing a pressure drop higher than the 
Blake critical pressure threshold. Above that point the bubble is unstable and grows non-linearly in 
response to the external pressure field [7].  Figure 1, images A-E show observations of these events.  The 
initial cavitation bubble remains stable in its size over this period, after which a rapid growth of the 
bubble is seen.  The time of the abrupt growth of the cavitation in the core of the vortex as shown in 
image G corresponds to the CSGT as shown in Figure 2.  The final presentation of this work will provide 
detailed experimental and theoretical analysis of the processed summarized above. 
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Figure 2.  The critical time of the supercavity development 
process over the range of parameters tested. 


