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 Though the intuitive idea of a vortex is of fundamental importance for fluid mechanics, 
there is still no consensus on the generally acceptable and rigorous definition of this distinct 
flow phenomenon. Nevertheless, fluid vortices have always been somehow related to a quite 
mathematically rigorous and physically well-established quantity: vorticity. This quantity, 
expressing an average angular velocity of fluid elements, attains high values in vortex cores 
(relative to its environment), however, this quantity cannot distinguish between shearing 
motions and the actual swirling motion of a vortex and misrepresents vortex geometry. 
 A large number of vortex-identification methods, vortex definitions, and vortex-core 
visualization techniques have been proposed (see e.g. Jeong and Hussain 1995, Kida and 
Miura 1998, Cucitore et al. 1999, Roth 2000, Chakraborty et al. 2005, Kolář 2007, and the 
references therein). The recent method of Kolář (2007) offers a certain qualitative 
“comeback” of vorticity to vortex identification, namely its specific portion labelled residual 
vorticity which is obtained after the extraction of a pure shearing motion and represents a 
direct measure of the swirling motion. The shearing motion itself is responsible for a specific 
portion of vorticity labelled shear vorticity. In 2D, there is a straightforward interpretation of 
the residual vorticity in terms of the least-absolute-value angular velocity of all line segments, 
within the flow plane, going through the given point, Fig.1. 
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Fig. 1 Interpretation of the residual vorticity in 2D: the least-absolute-value angular velocity. 



 The given vortex-identification method employs an additive vorticity decomposition 
which is an outcome of the triple decomposition of the relative motion near a point (TDM), 
proposed in Kolář (2007), where a closely related 3D algorithm for the triple decomposition 
of  is presented. TDM aims at the extraction of a so-called “effective” pure shearing 
motion. Accordingly 
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residual tensor has to do with elongation through  and rigid-body rotation through  
while the shear tensor ― of a defined purely asymmetric tensor structure ― represents a pure 
shearing motion. The decomposition algorithm is based on the extraction of the shear tensor 
from  on condition that it is maximizing the effect of extraction. It is guaranteed by 
minimizing the absolute tensor value of the residual tensor or, equivalently, by maximizing 
the quantity 
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(BRF). This frame is determined simultaneously on the basis of S and Ω unlike the system of 
principal axes of S, which is minimizing (to zero) the frame-dependent value of 

313123231212 ΩSΩSΩS ++ . Consequently, these two reference frames are considered as 
“antipoles” for depicting . u∇
 The present conference paper deals in detail with various physical aspects of the above 
mentioned concept of the relationship between a vortex and vorticity and the associated local 
flow kinematics. The most important aspect of the given identification approach is that the 
definition of a vortex through the residual rigid-body rotation is tied together ― through the 
TDM ― with the definition of a pure shearing motion. The same holds for an irrotational 
straining as the three elementary parts of the TDM are mutually conditionally balanced. The 
flow geometry obtained in the BRF reveals that for frequently equal or nearly equal leading-
diagonal elements the coordinate plane exhibiting elongation excludes rigid-body rotation in 
this plane and vice versa, hence the planes of these residual motions are perpendicular. A 
non-destructive nature of the superposition of the TDM parts is discussed. Some properties of 
the BRF and residual vorticity in 3D are investigated. An arbitrary non-zero deviatoric strain-
rate tensor and an arbitrary non-zero vorticity tensor produce a non-zero shear tensor. Various 
shear-tensor structures are uniquely interpreted by means of the local kinematics of shearing 
elements ― planes, lines, or points, depending on the flow complexity in 3D. An interesting, 
but controversial, idea of the vortex-identification requirement of allowance for an arbitrary 
axial strain (Wu et al. 2005) vs. the requirement of orbital compactness (Chakraborty et al. 
2005) is examined using the TDM. It is found that while stretching (uniaxially or radially) the 
local vortical motion near a point, there is an inherent objective physical bound for the 
amount of stretching to identify the examined point as part of a vortex. This bound is just the 
local 3D pure shearing motion of material points introduced in the frame of the TDM. The 
qualitative model of the TDM (see Fig. 1 of Kolář 2007) may help to qualitatively distinguish 
between vortex sheets and tubes. The asymptotic behaviour of a local vortex-shear interaction 
is examined in view of the meaningful local intensity of a vortex. The natural requirement of 
vortex-axis uniqueness for each connected vortex region is commented using simple flow 
examples of vortex-vortex interaction. The concept of residual circulation (calculated as a 
surface quadrature of the residual vorticity) for the description of vortex strength is discussed. 
An attempt to compare qualitatively the TDM vorticity decomposition with other known 
vorticity-decomposition techniques is presented. A simplification of the TDM algorithm 
directly follows for the 3D vortex identification based on the residual-vorticity magnitude. 
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