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Bifurcation of vortex breakdown patterns
in a circular cylinder with two rotating covers
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We analyse the topology of vortex breakdown in a closed cylindrical container in the
steady domain under variation of three parameters, the aspect ratio of the cylinder,
the Reynolds number, and the ratio of the angular velocities of the covers. We
develop a general post-processing method to obtain topological bifurcation diagrams
from a database of simulations of two-dimensional flows and apply the method to
axisymmetric simulations of the flow in the cylinder. Interpreting the diagrams with
the aid of bifurcation theory, we obtain complete topological bifurcation diagrams
for the rotation ratio in the interval [−0.04, 0.075]. In this narrow range we identify
three codimension-3 bifurcation points which act as organising centres for the entire
bifurcation diagram.

1. Introduction
In many vortex flows, secondary flow structures in the form of recirculating zones

may develop on the vortex axis. Such zones, or vortex breakdown bubbles, appear
for instance in the flow in a cylinder driven by rotating covers. The parameters
characterizing the flow are the cylinder aspect ratio h, the rotational Reynolds
number Re and the ratio of the angular velocities of the top and bottom lids γ given
by

h =
H

R
, Re =

Ω1R
2

ν
, γ =

Ω2

Ω1

, (1)

where R and H are the radius and height of the cylinder, Ω1 and Ω2 are the angular
velocities of the rotating covers and ν is the kinematic viscosity of the fluid.

Vogel (1968), Ronnenberg (1977) and Escudier (1984) have conducted experiments
in the steady-flow regime for one fixed cover, corresponding to γ =0, and have
examined the parameter domain 1.0 � h � 2.5 and 1000 � Re � 3000, locating regimes
with up to three recirculation bubbles. Numerical simulations assuming the flow
is axisymmetric, e.g. by Sørensen & Loc (1989), Lopez (1990), Daube (1991) and
Tsitverblit (1993), reproduce the overall flow structure from experiments well, although
the details of the bubble structure are influenced by asymmetric perturbations
induced by imperfections in the experimental set-up (Spohn, Mory & Hopfinger
1998; Sotiropoulos & Ventikos 2001; Hartnack, Brøns & Spohn 2000; Thompson &
Hourigan 2003). It is clearly established that the creation of recirculation bubbles is
not associated with a hydrodynamic instability. In the range we consider, there is
a unique steady stable solution to the Navier–Stokes equations. The creation of the
bubbles is a change of the topology of that steady solution. At higher Re, the steady
solution loses stability to an oscillating flow in a Hopf bifurcation (Tsitverblit 1993;
Gelfgat, Bar-Yoseph & Solan 1996b, 2001).
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Figure 1. Typical representatives of the four topologies (iso-curves of the stream function ψ)
we observe in the present study, here for γ = 0.012 and h = 2.2. Only the right-hand half of
the meridional plane is shown. The vertical line to the left is the cylinder axis. A: Re= 700, no
bubbles. B: Re= 1680, one bubble. C: Re= 1800, two bubbles. D: Re= 2080, one bubble with
inner structure.

Numerical and experimental studies for γ �= 0 have been performed by Bar-Yoseph,
Solan & Roesner (1990a, b), Valentine & Jahnke (1994), Gelfgat, Bar-Yoseph &
Solan (1996a), Brøns, Voigt & Sørensen (1999, 2001) and Okulov, Sørensen & Voigt
(2005). The number and structure of the breakdown bubbles turn out to be very
sensitive to variations in γ . This sensitivity indicates the possibility for control of
vortex breakdown in the flow. Mununga et al. (2005) show that vortex breakdown
can be controlled by a small rotating disk at the top and Herrada & Shtern (2003)
control vortex breakdown by temperature gradients. A new interest in the flow and its
control stems from its potential use as a bioreactor (Dusting, Sheridan & Hourigan
2004).

Using methods from dynamical systems theory, Brøns et al. (1999) initiated a
systematic construction of topological bifurcation diagrams in the steady regime. Only
the range −0.02 � γ � 0.05 was considered, and it is the purpose of the present paper
to extend the results to cover a larger range of rotation ratios. To this end, we propose
a general post-processing method, the isocline method, to obtain topological bifurca-
tion diagrams from numerical simulations of two-dimensional incompressible flows.

Here we cover the range −0.04 � γ � 0.075. It may still seem narrow, but was chosen
to demonstrate the applicability of the isocline method and because it contains a
surprisingly large set of different bifurcation phenomena involving the flow topologies
depicted in figure 1. Through the analysis, we see how the two-bubble parameter range
is created and disappears again.

The theory of dynamical systems is useful not only for deriving the isocline method
as a post-processing tool; it also serves as a guideline to interpret the numerically
obtained bifurcation diagrams. We will show that the bifurcation structure in the three-
dimensional parameter space is completely described by the theory of bifurcation of
stagnation points close to the cylinder axis (Brøns 1999, 2006). In particular, we
determine the existence of three codimension-3 points (h(i), Re(i), γ (i)), i = 1, 2, 3 in the
parameter space. Close to these points, the bifurcation structure is well understood
from the theory, and the complete bifurcation structure can qualitatively be seen as a
patching together of the local bifurcation diagrams.

Parts of the present work have been announced previously (Brøns & Bisgaard
2004).
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2. Computational method for the flow in the cylinder
The radial and axial components (u, v) of the incompressible axisymmetric velocity

field in the cylindrical container may be described by a stream function ψ such that

u =
1

r

∂ψ

∂y
, v = −1

r

∂ψ

∂r
. (2)

Here r, y are the radial and axial variables, respectively. Introducing x = r2/2, the
differential equations for the curves intersecting the stream surfaces in a meridional
plane are

dx

dt
= u =

∂ψ

∂y
,

dy

dt
= v = −∂ψ

∂x
. (3)

The topology of the iso-curves of ψ is determined by a qualitative study of the
trajectories of the non-linear system of differential equations (3). These equations
are also obtained for the streamlines for a two-dimensional incompressible flow in
Cartesian coordinates, and hence the same topological methods can be applied in
both cases.

To compute the stream function for the axisymmetric flow in the cylindrical
container we employ the finite-difference solver czax developed at LIMSI/CNRS
in France (Daube et al. 1985; Sørensen & Loc 1989; Daube 1991). The code has been
validated against experiments by Sørensen & Loc (1989), Westergaard, Buchhave &
Sørensen (1993), and Sørensen & Christensen (1995). It was found that simulations
with a grid resolution of �r =�y = 0.01 reproduce experiments accurately. Brøns
et al. (1999, 2001) investigated the influence of the grid size on the accuracy of
the determination of topological bifurcation points. Again, �r = �y = 0.01 gave
satisfactory results, and this grid size will also be employed here. We consider the
parameter range 0 � Re � 2400, 0 � h � 3, −0.040 � γ � 0.075, where there is a unique
stable steady solution to the Navier–Stokes equations. It is found by performing
dynamic simulations until transients have died out.

3. The isocline method for topological bifurcation diagrams
Consider a two-dimensional velocity field (u, v) depending smoothly on Cartesian

coordinates (x, y) and a vector p of parameters. For simplicity, we consider here only
two scalar parameters, so p = (p1, p2).

The basic topological bifurcation of a flow pattern is the change of the number of
stagnation points, that is, the points where the velocity vanishes, u(x, y) = v(x, y) = 0.
To monitor the creation or disappearance of stagnation points, we first locate, for a
fixed p, the ∞-isocline. This is the set of points (x, y) in the flow plane where u =0.
Generically, this set consists of a number of curves (branches). Stagnation points can
be located by keeping track of v along the ∞-isocline, and finding points where v = 0.
To formalize this, consider a branch of the ∞-isocline parameterized by arclength s,

(x, y) = (x∞(s), y∞(s)), (4)

and consider the variation of v along the branch,

V (s) = v(x∞(s), y∞(s)). (5)

Typical graphs of V when p is close to a bifurcation are shown in figure 2. In
figure 2(a), V has the same sign everywhere, and there are no stagnation points. As p
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Figure 2. The creation of stagnation points in an in-flow cusp bifurcation under variation
of parameters p through the bifurcation point p∗. The left-hand column shows streamline
patterns, stagnation points, and the ∞-isocline (heavy line). The right-hand column shows
corresponding graphs of V with a critical point s1, and the bifurcation function G1( p).

is varied, a local extremum of V takes the value 0 at the bifurcation point p = p∗ in
figure 2(b), and has changed its sign in figure 2(c) where two stagnation points exist.

We denote the critical point of V by s1, that is, V ′(s1) = 0. It will depend on the
system parameters, s1 = s1( p). Now define the bifurcation function

G1( p) = V (s1( p)). (6)

It appears from figure 2 that the bifurcation occurs when

G1( p) = 0. (7)

Solving this equation gives bifurcation curves in the parameter space �2. The critical
point s1 may not exist for all values of p. However, under the generic condition that
the extremum of V at the bifurcation point p = p∗ is quadratic, V ′′(s1( p∗)) �= 0, the
bifurcation function G1 is well-defined in a neighbourhood of p∗. This is the situation
illustrated in figure 2 in a flow region away from boundaries. This bifurcation is
known as a cusp bifurcation.

There may be several critical points s1, s2, . . . of V , and each gives rise to a bifur-
cation function Gi , which must be treated individually. Furthermore, the process must
be repeated for each branch of the ∞-isocline.

We stress that the bifurcations considered here are not related to any form
of hydrodynamic instability. We consider a flow regime where the Navier–Stokes



Bifurcation of vortex breakdown patterns 333

equations have a unique steady solution which depends smoothly on the external
parameters. It is only the topology of the streamlines for this family of steady flows
which changes. The dynamical system we consider here is the ordinary differential
equations (3), and a determination of the stability of the stagnation points, considered
as equilibrium points, can be performed. Since only the flow topology is of interest
in the present study, we omit this analysis. If, however, the motion of fluid particles
is of interest, for instance in a study of mixing, such a stability analysis is pertinent.

Any bifurcation phenomenon is associated with an integer number, the codimension
(Wiggins 2003). Topological bifurcations occur when degenerate stagnation points
are present in the flow, and the codimension measures the number of degeneracy
conditions fulfilled for that stagnation point. The scenario in figure 2 is associated
with a single degeneracy condition, namely V ′(s1( p∗)) = 0, and a non-degeneracy
condition V ′′(s1(p∗)) �= 0 and hence has codimension 1. If the non-degeneracy
condition is violated, V ′′(s1( p∗)) = 0, but a new non-degeneracy condition is fulfilled,
V ′′′(s1( p∗)) �= 0, the bifurcation point has codimension 2. Bifurcation points of
codimension 2 occur where curves of codimension-1 bifurcation points meet. Hence,
they are important for the understanding of the structure of the bifurcation diagram.

To find bifurcation points of codimension 2, we proceed as follows. Let σ1 denote
a critical point of V ′, that is, V ′′(σ1) = 0. This will depend on p, so we can define two
functions of the parameters,

H1( p) = V (σ1( p)), K1( p) = V ′(σ1( p)). (8)

The solutions to H1( p) = 0 and K1( p) = 0 are curves in the parameter plane. At a
point p∗∗ where a pair of these curves intersect, we have

V (σ1( p∗∗)) = V ′(σ1( p∗∗)) = V ′′(σ1( p∗∗)) = 0, (9)

and hence p∗∗ is a codimension-2 bifurcation point. As before, there may be several
critical points σ1, σ2, . . . , giving rise to different functions Hi, Ki , which must be treated
in turn, as well as the entire procedure for each of the branches of the ∞-isocline.

If more free parameters are present in the problem, more degeneracy conditions may
appear by proper choice of the parameters, and bifurcations of higher codimension
become relevant. The procedure above can, in principle, be generalized to find
bifurcations of any codimension, but as higher-order derivatives of V are required,
the numerical computations may become difficult.

In the isocline method, the role of the velocity components u and v may obviously
be interchanged. Hence, we may start with the 0-isocline where v = 0 and keep track
of u =U (s) along its branches. For the flow in the cylinder, we will use a combination
of both classes of isoclines.

To illustrate the method by a simple analytical example, we consider the flow
generated from the stream function

ψ = 1
2
y + p1x + p2x

2 + 1
4
x4, (10)

which was derived by Brøns & Hartnack (1999) as a normal form for two-parameter
bifurcation in a general flow. As

u(x, y) = y, v(x, y) = −(p1 + 2p2x + x3), (11)

we see that the ∞-isocline has the x-axis as its only branch. We choose s = x as
arclength and obtain

V (s) = v(s, 0) = −(p1 + 2p2s + s3). (12)



334 M. Brøns and A. V. Bisgaard

This function has two critical points which are defined for p2 � 0 only,

s1 =

√
6

3

√
−p2, s2 = −

√
6

3

√
−p2. (13)

We find the bifurcation functions

G1(p1, p2) = V (s1) = −p1 +
4
√

6

9
(−p2)

3/2,

G2(p1, p2) = V (s2) = −p1 − 4
√

6

9
(−p2)

3/2,

⎫⎪⎪⎬
⎪⎪⎭

(14)

and hence the two codimension-1 bifurcation curves

p1 =
4
√

6

9
(−p2)

3/2, p1 = −4
√

6

9
(−p2)

3/2, p2 � 0. (15)

To find codimension-2 bifurcation points, we consider the equation

V ′′(s) = −6s = 0 (16)

with the unique solution σ1 = 0 and define

H1(p1, p2) = V (σ1) = −p1, K1(p1, p2) = V ′(σ1) = −2p2. (17)

The solution to H1 = K1 = 0 is (p1, p2) = (0, 0). Thus, the two bifurcation curves (15)
meet at this unique codimension-2 point. The bifurcation diagram thus obtained
agrees with the one found previously (Brøns & Hartnack 1999, figure 4).

4. Numerical post-processing using the isocline method
For the flow in the cylinder, we aim at constructing a series of topological bifurcation

diagrams in the (h, Re) parameter plane for fixed values of the rotation ratio γ . To
this end, we use the solver described in § 2 to obtain a database of stream functions by
computing steady flows for each parameter pair on a rectangular grid in the (h, Re)-
plane, typically with �h= 0.08 and �Re = 25. The stream function is represented as
values on the grid points in the (r, y)-plane.

In this section, we describe a numerical implementation of the isocline method as a
post-processing method by showing how a part of the bifurcation diagram is obtained
from the database of stream functions at γ = 0.012.

4.1. On-axis bifurcations

For the present flow, the cylinder axis is always an ∞-isocline, since the radial velocity
vanishes here. The axis is parameterized by s = y, 0 � s � h. We start by processing
data on this branch.

Note, that in addition to being an isocline, the axis is also a streamline. Thus, the
creation of stagnation points on the axis gives rise to slightly different topologies from
those depicted in figure 2. We return to a general classification of the flow topologies
in § 6.1.

The first step is to partition the parameter plane into regions with the same number
of critical points si of V . In each region, the critical points can be unambiguously
labelled by the order they appear along the axis. Figure 3 shows that there are regions
with three, five and seven critical points si , labelled F3, F5, F7, respectively. Each of
the si in each of the regions Fk gives rise to a bifurcation function Gi,k(h, Re) = V (si).
Bifurcation curves are easily found using the MATLAB function contour, specifying
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Figure 3. The first steps in constructing the bifurcation diagram for γ = 0.012. The regions
Fk are bounded by piecewise linear curves reflecting the stepsize of the parameter grid. The
smooth curves are bifurcation curves obtained as zeros of the bifurcation functions. The
markers labelled (a)–(d) correspond to the cases shown in figure 4.

the contour level 0. These bifurcation curves are shown in figure 3. It appears that
only a few of the bifurcation equations Gi,k(h, Re) = 0 have a solution.

To illustrate the method and the role of the regions Fk , sample graphs of V and
corresponding flow topologies are shown in figure 4. Case (a) is in the region F3 with
three critical points for V . Furthermore, V has two zeros, corresponding to stagnation
points on the axis. As shown, these mark the top and bottom of a bubble attached
to the axis. Moving to case (b), belonging to F5, there are five critical points for V ,
but no change in the topology, as there are still only two zeros of V . Turning to case
(c), still in F5, the sign of V (s2) has changed, giving rise to two new zeros of V and
a new bubble on the axis. Finally, in case (d), V (s3) has changed sign, corresponding
to the merging of the two recirculation bubbles and the creation of a single bubble
with an inner structure.

We proceed to find codimension-2 points. To this end, we partition the parameter
plane into regions with a constant number of critical points for V ′. As shown in
figure 5, there are two such regions with six and eight critical points σi , respectively.
In S6, only the functions H3,6 and K3,6 have simultaneous solution curves. These
intersect in two codimension-2 points.

4.2. Off-axis bifurcation

To locate bifurcations in the cylinder flow off the cylinder axis, we have found it
convenient to switch to the 0-isocline. Otherwise we proceed as above, but first the
isocline is generated from the (r, y) grid values of v, which is obtained during the
czax computation in addition to ψ . The MATLAB function contour is used to solve
v =0. It outputs discrete points on the isocline, separated into branches.

In figure 6, we show a branch of the 0-isocline obtained this way, parameterized as
(x0(s), y0(s)) together with the function U (s) = u(x0(s), y0(s)). In case (a) (figure 6a),
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Figure 4. Sample flow topologies and corresponding functions V on the cylinder axis for
γ = 0.012. (a) Re= 1600, h = 1.8. (b) Re= 2250, h =1.8. (c) Re= 2250, h =2.0. (d) Re = 1850,
h =2.0.

U has two critical points and one zero, corresponding to the single off-axis critical
point. As parameters are changed towards case (d) (figure 6b), two new critical points
emerge, and in one of them, s3, U changes sign, signalling the creation of two new
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Figure 5. Division of the (h,Re) parameter space for γ = 0.012 into regions Sk with k = 6
and 8 solutions to V ′(s) = 0. Two codimension-2 bifurcation points (filled circles) are found as
intersections of the solution curves to K3,6 = 0 and H3,6 = 0.
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Figure 6. Left-hand side: a section of the flow topology with a branch of the 0-isocline shown
dashed. Right-hand side: corresponding graphs of U , the u-component of the velocity along
the branch. The parameter values of (a) and (b) are as in (a) and (d) in figures 3 and 4.

stagnation points. The off-axis bifurcation curve is found by solving the associated
bifurcation equation G3(h, Re) = 0. It is shown in figure 7 together with the on-axis
bifurcation curves from figure 3 and the codimension-2 points from figure 5. No
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Figure 7. The full set of bifurcation curves and codimension-2 points for γ = 0.012. In each
region, the letters denote the topology as indicated in figure 1.

other branches of the 0-isocline give rise to bifurcation, and hence the diagram is
complete.

Further details on the implementation can be found in (Bisgaard 2005).

5. Comparison with experiments
A few experimental bifurcation diagrams are available in the literature. In figure 8,

we compare results by Escudier (1984) and Roesner (1989) for γ = 0 with numerical
bifurcation curves obtained with the isocline method. Excellent agreement is obtained.

Bar-Yoseph et al. (1990a) have published experimental results for non-zero rotation
ratios. Their choice of dimensionless parameters are slightly different from ours, as
the rotation frequencies n1, n2 of the fast and slow lid, respectively, are used instead
of Re and γ . Since

n1 =
ν

2πR2
Re, n2 = γ ntop =

ν

2πR2
γRe, (18)

and R = 70 mm and ν = 100 mm2 s−1 in the experiment (Roesner, personal communi-
cation 2005), transformation between the two sets of dimensionless parameters is
easily achieved. Using this, the bifurcation diagram in figure 9 is obtained. Again,
good agreement is found.

6. Bifurcation diagrams in the range −0.04 � γ � 0.075

6.1. Theoretical framework from bifurcation theory

Before we embark on the numerical study of topological bifurcations for the flow in
the cylinder, we briefly review the relevant bifurcation theory to clarify which changes
in the flow structure can be expected.
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Figure 8. Computational bifurcation diagram for γ =0 compared with experiments by
Escudier (1984) (open circles) and Roesner (1989) (closed circles).
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Figure 9. Computational bifurcation diagram for non-zero rotation ratios compared with
experiments (open and closed circles) by Bar-Yoseph et al. (1990a). Below the curves there are
no bubbles, above the curves a single bubble exists.

As we have three independent parameters, h, Re, γ , at our disposal we are able
to fulfil up to three degeneracy conditions. Hence, we expect to see bifurcation
phenomena of codimension up to 3, as described in § 3. Local topological bifurcations
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(b)

c0 < 0 c0 < 0 c0 < 0

(c)

c0

c1

Figure 10. Topological bifurcation diagrams for the normal form (19). (a) Codimension 1,
σ = +1, bubble creation. (b) Codimension 1, σ = −1, bubble merging. (c) Codimension 2.

(a) (b) (c)

Figure 11. Regular codimension-3 scenario for the normal form (19) with σ = +1. The
bifurcation diagrams are shown in planes of the form c1 + c2 + α =0. (a) α < 0. (b) α = 0.
(c) α > 0. As α is increased, a curve of cusp bifurcations meets a curve of bubble creation
bifurcations. This gives rise to two codimension-2 points and a further curve of bubble merging
bifurcations.

are associated with the occurrence of degenerate stagnation points as in figure 2(b).
The degeneracy is simple if the linearization of the differential equations for the
streamlines, equation (3), has zero as an eigenvalue of geometric multiplicity 1. For
this case, for the flow close to the cylinder axis, Brøns (1999) derives a normal form
for the stream function of codimension N ,

ψ = x

(
1
2
σx + c0 + c1y + · · · + cN−1y

N−1 +
1

N + 1
yN+1

)
. (19)

Here the ci are transformed free parameters, and σ = ±1 is the sign of a certain
non-degenerate parameter. The factor x reflects that the axis x = 0 is a streamline.
The degenerate stagnation point of codimension N occurs for c0 = · · · = cN−1 = 0.
The bifurcation structure of (19) is shown in figures 10 and 11.

There are two types codimension-1 bifurcation, bubble creation (figure 10a) and
bubble merging (figure 10b). For even codimensions, the bifurcation diagram does not
depend on the sign of σ , so for N = 2 there is only one diagram (figure 10c). Here
a curve of bubble creation, a curve of bubble merging, and a curve of off-axis cusp
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(a) (b) (c)

Figure 12. The folded codimension-3 scenario in the (h,Re) parameter plane. (a) γ < γ ∗.
(b) γ = γ ∗. (c) γ > γ ∗. As γ is increased, a curve of bubble creation and a curve of bubble
merging bifurcations meet and give rise to two codimension-2 points and a curve of cusp
bifurcations.

bifurcations emanate from the codimension-2 point. In the cusp bifurcation, off-axis
stagnation points are created or destroyed as shown in figure 2.

The codimension-3 case can be displayed in several different ways as a sequence
of two-parameter bifurcation diagrams. One such choice is shown in figure 11 for
σ = +1. Later we will see that exactly this sequence will appear in the cylinder flow.
The σ = −1 case does not occur, so we omit it here.

The bifurcation diagrams in figure 11 show slices in the three-dimensional space
of transformed parameters c1, c2, c3. These will depend on the physical parameters,
in our case h, Re, γ . If the relation between the two sets of parameters is regular,
that is, there is a bijective mapping between them, the bifurcation diagrams will also
occur in the physical parameter space. We denote this codimension-3 scenario regular.
However, a codimension-3 situation may also occur if there is a degeneracy in the
relation between the mathematical and physical parameters. For example, suppose
that a codimension-2 bifurcation, stemming from two degeneracy conditions, occurs
at some (h∗, Re∗, γ ∗). Then the local streamline structure is described by (19) with
N = 2, and the two free parameters c0, c1. If, say,

∂c0

∂h
(h∗, Re∗, γ ∗) = 0, (20)

a third degeneracy condition appears. The bifurcation structure associated with these
degeneracies is treated by Brøns (2006), and gives rise to the bifurcation diagrams
shown in figure 12. We can think of this as the physical parameter plane (h, Re) being
folded along a line and placed in the (c1, c2) parameter space of figure 10(c). Varying
γ corresponds to moving the fold line through the codimension-2 point at the origin.
Hence, we denote this the folded codimension-3 scenario.

For the flow in the cylinder we expect to find, in the three-dimensional parameter
space, surfaces of codimension-1 bifurcations, curves of codimension-2 bifurcations,
and isolated points of codimension 3. Consequently, for the two-dimensional slices
for constant γ , we expect to find curves of codimension-1 bifurcations, points of
codimension-2 bifurcations, and no bifurcations of codimension 3 except at special,
isolated values of γ .

This is indeed what we see in figure 7. There are two codimension-2 points
from each of which three codimension-1 curves emanate. The structure of the
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Figure 13. Bifurcation diagram for γ = −0.04.
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Figure 14. Bifurcation diagram for γ = −0.02.

bifurcation diagram close to the codimension-2 points is as in figure 10(c), as expected.
Furthermore, there are two other codimension-1 curves. Hence, the theoretical
bifurcation diagrams act as local building blocks for the complete diagram.

6.2. Bifurcation diagrams

Using the method described in § 4 we show in figures 13 to 21 topological bifurcation
diagrams in the (h, Re)-plane for −0.04 � γ � 0.075. In all figures, a full line denotes
bubble creation bifurcation, a dashed line a second bubble creation bifurcation, a
dash-dotted line a bubble merging bifurcation, and a dotted line cusp bifurcation off
the axis.

For γ = −0.04, figure 13, only a single curve of bubble creation bifurcation is
present with a small parameter region where a single bubble exists. Increasing γ to
−0.02, figure 14, the bubble creation curve moves further into the diagram, and yet
a bubble creation curve appears. For γ = 0, figure 15, a curve of bubble merging
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Figure 15. Bifurcation diagram for γ = 0.
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Figure 16. Bifurcation diagram for γ = 0.005.

bifurcations occurs, and in this diagram all four flow topologies from figure 1 are
present. All three bifurcation curves are created outside the parameter region we
consider, probably in the unsteady regime, and move continuously into the diagram
for increasing values of γ . We have not monitored the exact values of γ where the
curves enter the steady regime.

For γ = 0.005, figure 16, the bifurcation diagram is qualitatively unchanged, but
the second bubble creation curve and the bubble merging curve have moved closer
together. This indicates the bifurcation scenario shown in figure 12 will appear. Indeed,
increasing γ to 0.012, figure 17, we see that the two codimension-1 bifurcation curves
meet in codimension-2 points a and b and a curve of cusp bifurcations connect these
points. Hence, for some γ (1) ∈]0.005, 0.012[ a codimension-3 point of folded type
exists (with h(1) ≈ 1.8, Re(1) ≈ 1700).



344 M. Brøns and A. V. Bisgaard

a

b

A

B

BC

C

1 2 3

800

1000

1200

1400

1600

1800

2000

2200

2400

h

Re

D

Figure 17. Bifurcation diagram for γ =0.012.
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Figure 18. Bifurcation diagram for γ =0.03.

Increasing γ to 0.03, figure 18, gives no qualitative change in the bifurcation
diagram. The codimension-2 points have moved away from each other, and the curve
of cusp bifurcations now turns upwards, making the region with one breakdown
bubble considerably larger. This tendency continues as γ is increased. For γ =0.065,
figure 19, point a has moved almost out of the diagram, and b is now very close to
the first bubble creation curve. Thus, there is a region with four bifurcation curves
being very close, as shown in the enlargement in figure 19.

A small increment in γ to 0.0675 (figure 20) results in a qualitative change. To
new codimension-2 points c and d have appeared. They are created in a folded
codimension-3 bifurcation for some γ (2) ∈]0.065, 0.0675[ where the second bubble
creation curve and the bubble merging curve touch tangentially, and again the
sequence in figure 12 occurs.
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Figure 19. Bifurcation diagram for γ =0.065. (b) An enlargement of the region
close to the codimension-2 point b.

The region near b and c is shown in an enlargement in figure 20. Note that the
qualitative structure of this diagram is exactly as in figure 11(c). As we increase
γ to 0.075 (figure 21) we see that the bifurcation diagram has changed to that of
figure 11(a). Thus, for some γ (3) ∈]0.0675, 0.075[ a regular codimension-3 point must
be present. The codimension-2 points b and c have merged and disappeared in the
bifurcation. Also the codimension-2 points a and d have moved out of the diagram.

7. Conclusions
In the present paper, we have obtained numerical topological bifurcation diagrams

for the flow structure of vortex breakdown in a circular cylinder with two rotating
covers. We interpret the diagrams with the aid of bifurcation theory, which gives
a high degree of certainty that the bifurcation diagrams are complete. Bifurcation
theory gives precise conditions on the velocity field and its derivatives for changes
of the flow patterns to occur. These conditions are difficult to interpret in simple
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Figure 20. Bifurcation diagram for γ = 0.0675. (b) An enlargement of the region
close the codimension-2 points b and c.

physical terms, and only a mathematical treatment of data, as in the present study,
can give the desired results.

The diagrams confirm that counter-rotating covers suppress vortex breakdown
whereas co-rotating covers have the opposite effect (Valentine & Jahnke 1994;
Mununga et al. 2005). Furthermore, for positive values of the rotation rate γ , we see
a fundamental transition of the diagrams as γ is increased. For γ very close to 0, two
bubbles are present in a rather large parameter region, but this topology does not
occur at all for higher values of γ . At the same time, the parameter region with one
bubble with an inner structure becomes more prominent. This transition takes place
in the narrow range 0 � γ � 0.075 through a rather complex sequence of topological
bifurcations, involving three codimension-3 points. These points in the parameter
space are associated with degenerate stagnation points on the cylinder axis, and the
local bifurcation structure is completely described by the normal form (19) which
accounts for bifurcations taking place close to the cylinder axis. At higher values of γ

than considered here, bifurcations which are not local to the axis will occur, and will
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Figure 21. Bifurcation diagram for γ = 0.075.

require different normal forms for their interpretation (Bisgaard, Brøns & Sørensen
2006). The numerical procedure is, however, independent of this, and will apply in
general.

We have developed the isocline method as a general means of obtaining topological
bifurcation diagrams and applied it to the flow in the cylinder. Elements of the method
was applied in previous studies of the flow in the cylinder (Brøns et al. 1999, 2001),
where global quadratic approximations to the bifurcation curves were found by a
manual procedure which cannot be expected to be generally applicable. As we are
considering the bifurcations of patterns of the trajectories of a two-dimensional
system of ordinary differential equations (3) under variation of parameters, there are
of course many well-established alternatives available for solving this fundamental
problem in non-linear dynamics. A number of packages based on path-following
exist, with AUTO (Doedel et al. 1997) as one of the most popular; but for topological
problems in fluid mechanics, path-following may be very cumbersome. The bifurcation
curves are constructed in steps, and for each step some iteration procedure is required
to find the correct point from an initial guess. As each new set of parameters will
require a new simulation of the Navier–Stokes equations and as the required steps will
typically be very small, in particular when bifurcation diagrams are complex as is the
case here, this may in our experience be very time-consuming, requiring substantial
user interaction. The programs require an analytical expression for the velocity
field to locate the stagnation points, and when the field is only given numerically,
some interpolation must be performed in each step, making the interface between
the Navier–Stokes solver and the path-following program a non-trivial matter. In
contrast, the isocline method starts with a database of simulations and then gives the
bifurcation diagrams by post-processing.

The isocline method can also easily be configured to give successive refinements of
the bifurcation diagram. One may start with a few simulations on a very coarse grid
in the parameter space, and use these data to form a rough idea of the bifurcation
diagram, as the bifurcation functions G, whose zeros are the bifurcation curves, are
well-defined on any grid. The grid may then be refined adaptively in the regions where
bifurcations occur until the desired resolution is achieved. For simplicity, we have not
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applied this strategy in the present paper, but we consider it an important asset of the
method. A similar feature is hard to implement in a path-following method. Hence,
the isocline method has the potential to be an efficient tool for generating topological
bifurcation diagrams for general two-dimensional flows.

J. N. Sørensen has kindly provided us with the axisymmetric solver czax which
we have used for the numerical simulations. We thank an anonymous reviewer for
pointing out the paper by Bar-Yoseph et al. (1990a).
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