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Summary. Vortex breakdown of bubble type is studied for the flow in a cylinder with rotating top

and bottom covers. For large ratios of the angular velocities of the covers, we observe numerically that

the vortex breakdown bubble in the steady regime may occur through the creation of an off-axis vortex

ring. This scenario does not occur in existing bifurcation theory based on a simple degeneracy in the flow

field. We extend the theory to cover a non-simple degeneracy, and derive the associated bifurcation

diagrams. We show that the vortex breakdown scenario involving a vortex ring can be explained from this

theory, and that the numerically generated bifurcation diagrams are consistent with the theory.

1 Introduction

The term vortex breakdown is used to describe abrupt spatial changes in the structure of a

vortex. This much studied phenomenon was first reported by Peckham and Atkinson [19] in

connection with the flow over delta wings. Several different types of vortex breakdown have

been identified. The main categories are the S-type, where the vortex changes into a spiral

structure, and the B-type, where a recirculating zone (or bubble) attached to the vortex axis

appears [15].

A much used set-up for the study of vortex breakdown is a fluid-filled cylinder where a

swirling flow is generated by rotating covers. The system parameters governing the flow are the

cylinder aspect ratio h ¼ H=R, the Reynolds number Re ¼ X1R2=m, and the ratio of the angular

velocity of the covers c ¼ X2=X1. Here R and H are the radius and height of the cylinder, X1

and X2 are the angular velocities of the rotating bottom and top cover, and m is the kinematic

viscosity of the fluid. Experiments by Vogel [28], Ronnenberg [20], and Escudier [11] with a

fixed top cover and a rotating bottom cover, corresponding to c ¼ 0, show that up to several

vortex breakdowns of B-type may be formed at the center axis. Escudier [11] also established a

bifurcation diagram in the parameter domain 1:0 < h < 2:5 and 1000 < Re < 3000, mapping

the transitions between the different flow topologies. The location and shape of the vortex

breakdown bubbles have been reproduced accurately from numerical simulations assuming

axisymmetry of the flow [17], [22], even if the details of the structure of the breakdown bubble

are sensitive to three-dimensional imperfections [23], [25], [26]. The structure of vortex

breakdown bubbles for non-zero values of c has been studied both experimentally and com-

putationally in [1], [3], [6], [12], [18], [27]. These studies show that the flow topology is quite

sensitive to variations in c.
B-type vortex breakdown also occurs if the top cover is removed, and the fluid has a free

surface [24]. This configuration has been proposed as an easily controllable layout for a
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bioreactor [10]. The effects of magnetic fields on the flow of a liquid metal are studied in [2].

Furthermore, for high values of the aspect ratio h, S-type vortex breakdown has recently been

observed [16], [21], demonstrating the richness of this simple flow configuration.

In the parameter regime we consider here, there is a unique, steady stable flow. Hence,

changes in the flow pattern are not associated with any dynamical instability, but are solely

associated with a change in the topology of the flow field as the parameters are varied, and for

each set ðh;Re; cÞ there is a unique flow topology. Such topological changes are conveniently

described with terms from non-linear dynamics. Vortex breakdown of B-type normally occurs

by the creation of a degenerate stagnation point (or critical point) on the vortex axis. As

parameters are changed, the degenerate stagnation point turns into two regular, nearby stag-

nation points of saddle type. The bubble surface consists of a stream surface connecting one

stagnation point to the other. Thus, as the stagnation points move away from one another, the

breakdown bubble grows in size. The dynamical systems approach has successfully been used to

construct bifurcation diagrams from numerical simulations in the steady, axisymmetric domain

[3]–[8]. The analysis is based on theoretically obtained bifurcation diagrams which describe the

possible flow topologies close to degenerate stagnation points where the linearization of the

velocity field has a zero eigenvalue. If the geometric multiplicity of the zero eigenvalue is one,

the degeneracy is denoted simple. Theoretical bifurcation diagrams for simple stagnation points

are constructed in [5], and they have been sufficient to explain all hitherto observed topological

changes associated with bubble-type vortex breakdown for low values of c. However, for higher

values of c than previously analyzed systematically, sequences of bifurcations occur which

cannot be described by the bifurcation theory of simple stagnation points.

An example is shown in Fig. 1. Here stagnation points are created off-axis together with a

vortex ring. The change in topology from no breakdown (Fig. 1a) to breakdown (Fig. 1e)

occurs in two stages. First a degenerate stagnation point is created off-axis (Fig. 1b), and the

stagnation point bifurcates into a regular saddle and a regular center (Fig. 1c). The dividing

streamline of the saddle point defines a vortex ring. The vortex ring attaches to the axis in a

degenerate stagnation point (Fig. 1d), and a breakdown bubble is finally created (Fig. 1e).

Vortex rings as in (Fig. 1c) and degenerate configurations as in (Fig. 1d) do not occur in

bifurcation diagrams based on simple eigenvalues. Hence, a new theoretical framework is

needed to topologically describe the transitions shown in Fig. 1.

In the present paper, we provide this framework by performing a bifurcation analysis for a

non-simple stagnation point at a vortex axis. We show that the existence of vortex rings is to be

expected near non-simple degenerate stagnation points, and that the bifurcation scenario in

Fig. 1 appears in the bifurcation analysis. We perform numerical simulations for c in a region

not analyzed in detail before, and show that non-simple stagnation points occur consistently.

We construct two-dimensional bifurcation diagrams in the ðh;ReÞ plane, and show that the

range where vortex rings occur may be quite large.

2 Bifurcation of flow structures near a non-simple degeneracy

Consider an incompressible, axisymmetric flow described in cylindrical coordinates ðr; h; zÞ
with corresponding velocity components ðu; v;wÞ. The velocity field depends only on r; z, and a

stream function wðr; zÞ exists such that

u ¼ 1

r

@w
@z

; w ¼ � 1

r

@w
@r

: ð1Þ
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The center axis is a streamline, so a boundary condition is

w ¼ 0 for r ¼ 0: ð2Þ

Introducing a new radial variable q ¼ 1
2
r2 the differential equations for the iso-curves of w are

recast into the two-dimensional Hamiltonian system

_q ¼ ur ¼ @w
@z

; _z ¼ w ¼ � @w
@q

: ð3Þ

The iso-curves of w are intersections of axisymmetric stream surfaces with a meridional plane.

A topological investigation of Eqs. (3) commences by a local analysis conducted close to a

given point on the axis. We take this point to be the origin ðq; zÞ ¼ ð0; 0Þ. The local analysis is
based on the expansion

wðq; zÞ ¼
X1

m;n¼0

wm;nqmzn: ð4Þ

From the boundary conditions (2) we find that

a

d e

b c

Fig. 1. Sample patterns of the steady flow in the cylinder for different values of the system parameters.

Each panel shows intersections of the axisymmetric stream surfaces in a meridional plane. Only the
right half of the meridional plane is shown. The vertical line to the left is the cylinder axis. The curves

are obtained as iso-curves of the stream function w using the finite-difference code described in Sect. 3.
In all cases c ¼ 0:14, h ¼ 1:64. a Re ¼ 2400, no secondary flow structure; b Re ¼ 1933:3, off-axis
degenerate stagnation point; c Re ¼ 1875, an in-flow vortex ring; d Re ¼ 1853:8, the vortex ring
attaches to the center axis at a degenerate stagnation point; e Re ¼ 1825, vortex breakdown bubble
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w0;n ¼ 0 for n ¼ 0; 1; 2; . . . : ð5Þ

With this, the system (3) becomes

_q
_z

� �
¼ 0
�w1;0

� �
þ w1;1 0
�2w2;0 �w1;1

� �
q
z

� �
þ O jq; zj2

� �
: ð6Þ

For w1;0 ¼ 0 the origin is a stagnation point. Linearizing at the origin the system has the

Jacobian matrix

J ¼ w1;1 0
�2w2;0 �w1;1

� �
: ð7Þ

If w1;1 6¼ 0 the Jacobian J has the simple eigenvalues k ¼ �w1;1 implying that the stagnation

point is a hyperbolic saddle having the center axis as one separatrix and a second separatrix

points into the flow. Depending on the sign of w1;1 the saddle is either a point of separation or

attachment. If w1;1 ¼ 0 it follows that J has an eigenvalue k ¼ 0 with algebraic multiplicity 2

and the origin is a degenerate stagnation point.

Two sub-cases exist. If w2;0 6¼ 0 the zero eigenvalue has geometric multiplicity 1. If w2;0 ¼ 0

the zero eigenvalue has geometric multiplicity 2. The first case is analyzed in detail in [5], and we

now consider the latter case.

The parameters wm;n are functions of the physical parameters h;Re; c. We are interested not

only in the case where an exact degeneracy w1;0 ¼ w1;1 ¼ w2;0 ¼ 0 occurs – corresponding to

specific sets of the physical parameters – but also in the changes of the flow pattern when the

parameters are close to such a degenerate combination. Hence, we think of w1;0;w1;1;w2;0 as

small parameters, and to distinguish this, we rename them

e1;0 ¼ w1;0; e2;0 ¼ w2;0; e1;1 ¼ w1;1:

With this, the stream function reads

wðq; zÞ ¼ q e1;0 þ e2;0qþ e1;1zþ w3;0q
2 þ w2;1qzþ w1;2z2

� �
þ O jq; zj4

� �
: ð8Þ

This stream function can be simplified by assuming that w1;2 6¼ 0, and by introducing a

translation along the center axis together with a linear transformation

q
z

� �
¼

0
� e1;1

2w1;2

� �
þ

1 0
� w2;1

2w1;2
1

� �
x

y

� �
; ð9Þ

Eq. (8) becomes

wðx; yÞ ¼ x �e1;0 þ �e2;0xþ �w3;0x2 þ w1;2y2
� �

þ O jx; yj4
� �

; ð10Þ

where

�e1;0 ¼ e1;0 �
e2

1;1

4w1;2

 !
; �e2;0 ¼ e2;0 �

e1;1w2;1

2w1;2

 !
; �w3;0 ¼ w3;0 �

w2
2;1

4w1;2

 !
:

Further assuming that �w3;0 6¼ 0 allows us to introduce the scaling

y!

ffiffiffiffiffiffiffiffiffiffiffi
�w3;0

w1;2

�����

�����

vuut y ð11Þ

and, finally, dividing by �w3;0, we arrive at the normal form

wðx; yÞ ¼ x c1 þ c2xþ x2 þ ry2
� �

þ Oðjx; yj4Þ; ð12Þ
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where c1 and c2 are scaled small parameters and r ¼ þ1 for �w3;0=w1;2 > 0 and r ¼ �1 for
�w3;0=w1;2 < 0. The normal form (12) leads to the dynamical system

_x ¼ 2rxy; _y ¼ �ðc1 þ 2c2xþ 3x2 þ ry2Þ; ð13Þ

truncated at third order.

The analysis of the system (13) commences by locating the stagnation points. On-axis

stagnation points with x ¼ 0 satisfy

c1 þ ry2 ¼ 0 ð14Þ

with solution y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�c1=r

p
. Hence, the stagnation points exist when c1 has the opposite sign

of r, and bifurcation occurs when c1 ¼ 0. Stagnation points off the axis with x 6¼ 0 satisfy y ¼ 0

and

c1 þ 2c2xþ 3x2 ¼ 0: ð15Þ

The number of stagnation points changes when the discriminant of this equation is zero,

c2
2 ¼ 3c1: ð16Þ

At this parameter combination, the stagnation point has x ¼ �c2=3. It is in the physical

domain x � 0 only for c2 � 0. Away from the bifurcation curve (16), there are either two or

no stagnation points. The type of the stagnation points can be determined by the deter-

minant of the Jacobian; if it is positive, the stagnation point is a center, if it is negative, it is

a saddle [13]. It is not difficult to see that the bifurcation occurring at the curve (16) is the

merging and disappearance of a saddle and a center, previously denoted a cusp bifurcation

[5], [7].

When r ¼ �1 four stagnation points exist for c2 < �
ffiffiffiffiffiffiffi
3c1

p
and c1 > 0; two saddle points on

the center axis, one in-flow center and one in-flow saddle point, see Fig. 2a. This constellation

of stagnation points gives the possibility of two global topologies. Either a recirculation zone

exists together with an in-flow saddle point, or an in-flow homoclinic loop exists together with

two separatrices emanating from the center axis. A global bifurcation involving heteroclinic

connections between the saddle points separates the two topologies. The global bifurcation

curve is determined by using the fact that the value of the stream function at the in-flow saddle

point is equal to the value of the stream function on the center axis due to the heteroclinic

connections, i.e., Eq. (15) together with

wðx; 0Þ ¼ xðc1 þ c2xþ x2Þ ¼ 0: ð17Þ

Solving these equations and discarding the solution x ¼ 0 and c1 ¼ 0, one finds that the global

bifurcation takes place at c2 ¼ �2
ffiffiffiffiffi
c1
p

for c1 > 0.

This completes the bifurcation analysis, which is summarized in Fig. 2. The sequence of

flow topologies shown in Fig. 1 is found for r ¼ þ1 if c2 < 0 and c1 is decreased from

positive to negative values. This indicates that non-simple degenerate stagnation points

may occur for non-zero rotation rates c. In the next section we show that this is indeed the

case.

The above analysis assumes the non-degeneracy conditions w1;2 6¼ 0, w3;0 6¼ 0. If one of

these conditions is violated, the natural setting is to consider the parameter as small, and

add it as another e-parameter to the list of small parameters. This will give rise to three-

parameter normal forms including terms of higher order in the spatial variables, and cor-

responding more complex bifurcation diagrams. This analysis is outside the scope of the

present paper.
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3 Numerically obtained bifurcation diagrams

We have used a vorticity-stream function based finite-difference code to solve the Navier–

Stokes equations for the axisymmetric flow in the cylinder. The code was developed at

LIMSI/CNRS [9], [22] and has been thoroughly validated against experiments and grid

dependence [7], [8], [22]. The grid consists of 100 nodes in the radial direction and 100 h

nodes in the axial direction.

A detailed bifurcation analysis in the steady regime for �0:04 � c � 0:075 has been con-

ducted in [3], [4], [6], [7]. Here we consider 0:075 � c � 0:20. For fixed values of c, we consider
1 � h � 2 and 800 � Re � 2400 which is well within the range where there is a unique stable

steady flow.

We construct bifurcation diagrams in the ðh;ReÞ parameter plane for fixed values of c using

the method of isoclines developed in [3], [4]. We briefly review the method here.

On a rectangular grid in the ðh;ReÞ parameter plane with Dh ¼ 0:02 and DRe ¼ 10 we

perform simulations until a steady state is found. For each of the steady flow fields the 1-

isocline, defined as the set of points in the ðr; zÞ domain where the radial velocity is zero, u ¼ 0,

is found. The set consists typically of a finite number of curves, and, in particular, the cylinder

axis. Keeping track of the axial velocity w along the branches of the 1-isocline allows us to

locate stagnation points, as these are solutions to w ¼ 0. A bifurcation function Gðh;ReÞ which
measures the extremal value of w along a given branch of the 1-isocline can be defined such

that the creation or merging of stagnation points occurs when G ¼ 0. Solving this equation

yields the bifurcation curves in the ðh;ReÞ plane. A simple alternative consists in plotting the

1-isocline together with the 0-isocline (where w ¼ 0) and monitor whether there are points of

intersections of the two classes of isoclines.

Numerical results are shown in Fig. 3. For c ¼ 0:075, Fig. 3a, there is a parameter region

with no secondary flow structure and a region with vortex breakdown. Crossing the bifurcation

line between the two regions corresponds to crossing the line c1 ¼ 0 for c2 > 0 in Fig. 2b. This

bifurcation curve is associated with a simple degenerate stagnation point.

For c ¼ 0:08, Fig. 3b, there exists a narrow wedge in the parameter plane where a vortex ring

exists. The wedge ends in a point corresponding to parameter values where a non-simple

c2 c2

c1c1

a b

Fig. 2. Bifurcation diagram for the normal form Eq. (12); a r ¼ �1. b r ¼ þ1
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degenerate stagnation point exists on the vortex axis. The local structure of the bifurcation

diagram corresponds to Fig. 2b. No qualitative changes in the bifurcation diagrams occur as c
is increased. The double degenerate point moves into the diagram, and the wedge with a vortex

ring grows considerably, as shown for c ¼ 0:20 in Fig. 3c.

4 Conclusions

In this paper we have shed light on the structure of vortex breakdown in a cylinder with

rotating top and bottom in a parameter regime which has not been studied in systematic detail

before. We have shown that for sufficiently large values of the rotation rate c of the covers a

secondary flow structure in the form of a vortex ring detached from the axis can occur. The

parameter range in the ðh;ReÞ plane where this flow topology occurs grows to a considerable

size as c is increased. To our knowledge, there are no experimental studies of the present

parameter regime available in the literature, and the off-axis vortex ring has not previously been

observed. However, for the flow in the cylinder where a thin rotating rod is added at the

cylinder axis for control purposes, Husain et al. [14] interpret some of their visualization

experiments as displaying an off-axis vortex ring.

The transition in Fig. 1 may be hard to detect experimentally. If the flow is visualized

by tracer particles released close to the cylinder axis, the vortex ring will not be

observed directly, unless it is very close to the axis. Hence, the transition may appear to

consist of a direct transition from no vortex breakdown (Fig. 1a) to a large vortex

breakdown bubble (Fig. 1e).

We have obtained topological bifurcation diagrams on the basis of the isocline method as a

post-processing tool for numerical simulations. We have shown that the bifurcation diagrams

are to be expected to appear close to non-simple stagnation points, and hence the computa-

tional results rest on a firm mathematical foundation.

1 1.5 2

800

1000

1200
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1600

1800

2000
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2400
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e

g  = 0.075

a

(A)

(E)
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h

R
e

g = 0.08
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1 1.5 2
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1200

1400
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2000

2200
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h

R
e
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c

(A)

(E)

(C)

Fig. 3. Numerically obtained bifurcation diagrams; a c ¼ 0:075. b c ¼ 0:08. c c ¼ 0:20. The labels in

each region correspond to the topologies in Fig. 1
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