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I. NUMERICAL RESULTS

The flow of a viscous fluid past solid objects is characterised by successive bifurcations leading to various kinds of
shedding modes. We use numerical simulation to study the case of fixed bodies with axial symmetry[1]. The case
of a sphere is well documented[2]. A first bifurcation occurs for Re ≈ 210 (where Re is a Reynolds number based
on the body diameter and the incoming velocity), and gives rise to a steady shedding (SS) mode characterised by a
reflexional symmetry (figure 1a) and a constant lift force. A second bifurcation takes place for Re ≈ 270. The resulting
mode (figure 1b) was called a reflexion symmetry preserving mode (RSP) because it is characterised by a reflexional
symmetry and a lift force periodically oscillating about a non-zero mean value. A different picture is observed in
the case of a flat disk. A first bifurcation is found for Re ≈ 116, leading to a steady-state mode similar to that
observed with a sphere. However the second bifurcation, which occurs for Re ≈ 121, leads to a reflexion symmetry
breaking mode (RSB, figure 1c). This mode mode is characterised by a lift force which periodically oscillates around
a mean direction. A third bifurcation occurs for Re ≈ 139, leading to a shedding mode which recovers the reflexional
symmetry (figure 1d). This mode was called a standing wave (SW) mode by analogy with other applications.

II. NORMAL FORM THEORY

We introduce a theoretical model based on normal form theory to explain these findings. According to the central
manifold theorem, the whole dynamics can be reduced to a system of coupled equations governing the amplitudes
of the dominant modes of the problem. This system can be further reduced to its so-called normal form by taking
into account the symmetries of the problem. Here, the dominant modes, revealed by linear stability analysis of the
axisymmetric solution [3], are a steady-state mode (characterised by a complex amplitude a0) and a Hopf mode
(characterised by two complex amplitudes a1, a2). The symmetries of the problem correspond to the O(2) symmetry
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FIG. 1: Shedding modes in the wake of axisymmetric objects (axial vorticity contours) : (a) steady-state (SS) mode for a
sphere with Re = 250, (b) reflexion symmetry preserving (RSP) mode for a sphere with Re = 280. (c) reflexion symmetry
breaking (RSB) mode for a flat disk with Re = 123, (d) standing wave (SW) mode for a flat disk with Re = 150.
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FIG. 2: Theoretical bifurcation diagrams for the sphere (a) and the flat disk (b). Solid (resp. dashed) lines denote stable (resp.
unstable) branches. (c) : Lift coefficients of a flat disk vs. Re. Solid line : Cy (model); crosses : Cy (DNS); dashed line :
max(Cz) (model); Circles : max(Cz) (DNS).

group (i.e. invariance by rotations and reflexions).
The normal form relevant to this situation is given in [4], and can be set into the following form:
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ȧ2 = (λh + iωh)a2 +
(

B|a2|
2 + (A + B)|a1|

2
)

a2 + C|a0|
2a2 + Dā0
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This system was initially introduced to explain the various patterns observed in the Taylor-couette experiment which,
under appropriate hypotheses, admits the same symmetry group. The simplest solutions of this system are a steady-
state solution (SS), two ”pure” Hopf modes including a standing wave (SW), and a rotating wave (RW, not observed
here), as well as two ”mixed modes” which can be identified with our RSP and RSB modes, respectively. We have
selected values of the parameters entering the normal form which allow to obtain bifurcation diagrams qualitatively
consistent with the numerical observations. Such diagrams are plotted in figure 2a for the sphere and 2b for the disk.

In the latter case, the model was also used to predict the lift forces exerted on the body. The corresponding lift
coefficients are plotted as function of the Reynolds number and compared to the DNS results in figure 2c, showing
excellent qualitative agreement. Note that a determination of the coefficients of the model has also been performed
in [5] through a global stability analysis, and provide a further confirmation of the validity of the demarch.

III. DISCUSSION

The normal form introduced here has thus proved to be sucessful to explain the observed differences in the wakes of
a fixed disk and a fixed sphere. This approach is also applicable to the wakes of axisymmetric bodies of any particular
shape, and opens new ways to explore such problems. In particular, applying the present theory to moving bodies
could be of great interest, the most challenging situation being that of freely-moving bodies whose motion is driven
by buoyancy, such as rising bubbles. The path of such bodies is known to exhibit a variety of forms, including planar
zigzags, helices, tumbling motions, etc. It is now recognized [6] that such path instabilities are directly linked to an
instability of the recirculating region in the near-wake of the body. Extending the present approach to such problems
in which the geometrical degrees of freedom of the body are intimately coupled to the wake dynamics is an extremely
challenging question to which we will devote future efforts.
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