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In winter in East Asia Region, cold airmass often outbreaks from the Continent.

Under such weather conditions, in the lee side of an island with a high mountain, a weak

wind region is made and a vortex street called Kármán vortex is often generated and its

flow pattern is visualized by clouds. Similar vortices are also found in the oceans: The

Kuroshio current after leaving the coast of Japan, which is called Kuroshio Extension,

usually meanders strongly and generates eddies on its both sides. In this way, jet or

weak flow region often meanders because of its instability and generates a vortex street,

in the atmosphere and oceans.

In order to investigate the general features of the formation process and statistics of

vortex streets generated from the meander of jets, a simple model described by barotropic

quasi-geostrophic equation (aka CHM equation) is numerically time-integrated, and the

vorticity distribution in the mature steady state is investigated.

To describe this steady state, the statistic theory for vorticity, which was proposed by

Robert and Sommeria (1991), is a very powerful tool. According to their theory, the final

steady state is determined by a simple principle familiar in statistical physics: in the

final equilibrium state, the ‘mixing entropy’ must be maximum under the conservation

restriction for several quantities such as energy, momentum and so on. They considered

situations where the initial state consists of uniform vorticity ‘patches’ of finite kinds

of vorticity values, and derived the relation which the vorticity and the stream-function

must satisfy. As an example of the application of this theory, Sommeria et al. (1991)

calculated the simplest situation consisting of two kinds of uniform vorticity patches,

which describes a shear flow, and showed the validity of their theory.

A jet-shaped current situation demands at least three kinds of uniform vorticity

patches. This situation was investigated by Thess and Sommeria (1994) and they showed

that this ‘maximum mixing entropy principle’ is also applicable for a trapezoidal jet situ-

ation. If the initial paralell flow field oriented to x-direction is divided into zonal regions



with three kinds of potential vorticity values −Q0, Q0 and 0, their statistic theory pre-

dicts that the stream function ψ and the potential vorticity q of the steady equilibrium

state, must have relation

q =
2Q0 exp γ sinh[Q0(αy − βψ)]

2 exp γ cosh[Q0(αy − βψ)] + 1
,

where, α, β, γ are constants. The vortex pair must be separated to the borders of the

region, and it was confirmed by the numerical calculation.

The numerical calculation in the study here, the initial current is a quasi-geostrophic

triangular jet with potential vorticity distribution −Q0 for (−L < y < 0), Q0 for (0 <

y < L) and 0 for (|y| < L). However, the vortex pair formed by its instability remains

near the original jet current with a moderate distance, not separated to the borders of

the region. The scatter plotting of stream-function ψ vs potential vorticity q in this

calculation shows that the relation between these two quantities still obey the relation

derived by Thess and Sommeria (1994). Nevertheless, the relation is not described by

only one set of parameters, but it separates to two distinct ‘branches’. One of these two

branches corresponds to the region near the initial jet where the mixing fully occurs, and

the other to the both sides of the jet which the mixing does not reach, and the potential

vorticity q is almost 0 on this branch.

Since two branches cross at the origin of the ψ-q plane, the two branches are not

clearly separated. In order to distinguish these two branches, we consider a distribution

of passive scalar c which is distributed as C0 for (y < |L|) and 0 for (y > |L|). In the

equilibrium state, stream function ψ and scalar c must have relation

c =
2C0 exp γ sinh[C0(αy − βψ)]

2 exp γ cosh[C0(αy − βψ)] + 1
.

The scatter plotting of ψ vs c of the numerical calculation shows separation between

these two branches much more distinctly, and we can identify how far extends the region

where the mixing occurred.


