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One hundred and fifty years after Helmholtz’ “Wirbel” paper [7], the study of vortices on surfaces is still in
its infancy, confined basically to the sphere or surfaces of revolution3. As far as we know an intrinsic Hamil-
tonian formulation for the motion of N point vortices sj of strengths κj on a closed (compact, boundaryless,
orientable) surface S with riemannian metric g is in order. We hope to fill this gap, providing also some
clarifications to [6]. For the full version of this note, see arXiv:0802.4313v1 [math.SG].

1. Desingularizing the stream function is mainstream mathematics (no pun intended). The stream func-
tion produced by a unit point vortex at so on a background uniform counter vorticity is given by Green’s
function Gg(s, so) of the Laplace-Beltrami operator ∆g = divg ◦ gradg

4. For any surface, Gg behaves
near so as log d(s, so)/2π [12]. An energy core argument [5] implies that a single vortex so drifts on S ac-
cording to the Hamiltonian system (Ωg, Rg), where Ωg is the area form of g and Rg is Robins’s function
Rg(so) = lims→so

Gg(s, so)− log d(s, so)/2π, an important object form geometric function theory. Moreover,
if S has genus zero, it it known that Rg = ∆−1

g K + trace∆−1
g /A(S).

2. The collective Hamiltonian keeps the same form of C.C.Lin seminal paper [10],

Ωcollective =
N∑

j=1

κJΩ(sj) , H =
∑

1≤i<j≤N

κiκjGg(si, sj) +
N∑

`=1

1
2
κ2

`Rg(s`) .

[ For Jordan domains D ⊂ S the structure is the same, using the appropriate hydrodynamical Green function.
An extension for vortices with mass is also immediate. ]

3. Under conformal changes of metrics g̃ = h2g the symplectic form changes accordingly to Ωg̃ = h2Ωg while
the new Hamiltonian is given by

H̃ = H − 1
4π

N∑

`=1

κ2
` log(h(s`))− κ

Ã(S)

N∑

`=1

κ`∆−1h2(s`) , κ =
N∑

`=1

κ` .

[ The presence of the total vorticity reflects the fact that when it vanishes, the collective vortex stream func-
tion ψ(s; s1, ..., sN ) is independent of the conformal metric g̃ = exp(2φ)g. In this case the g̃-regularization
of ψ at any of the vortices simplifies: one just subtracts off 1

2π φ(sj) from the g-regularized stream function
at sj . In particular, when S is conformal to the standard sphere, making an artificial puncture at any given
s∗ ∈ S allows to easily write vortex motions for any metric on the sphere. ]
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4. We give a simple proof of Kimura’s conjecture: a vortex dipole describes geodesic motion. Therefore,
searching for integrable vortex pair systems on Liouville surfaces [9] is a natural mathematical question.

6. Ongoing work. We are presently focusing on the vortex pair problem, an Hamiltonian system on S × S,
where the symplectic form is the difference Ω = κ(ω(s1)−ω(s2)), ω being the area form of S and Hamiltonian
given by H = κ2(− log d(s1, s2)/2π+B(s1, s2)) , B(s1, s2) = (R(s1)+R(s2))/2−(G(s1, s2)− log d(s1, s2)/2π) .
We call B Batman’s function, seemingly an yet unexplored object. It vanishes on the diagonal and is
O(d(s1, s2)2). A more detailed proof of Kimura’s conjecture, aiming at perturbation studies, requires its
expansion and a blow-up at the diagonal of S × S, transforming the problem to a neighborhood of the zero
section of T ∗S. We show how the geodesic dynamics in T ∗S is perturbed when the two opposite vortices s1, s2

are at a small nonzero distance d(s1, s2) = O(ε). If the vortex system is integrable, so is the limiting geodesic
motion. Integrable vortex pair systems must belong to Liouville surfaces. For which of them does the converse
hold? The converse is clearly true for surfaces of revolution, although we verify that the second integrals are
unrelated. The vortex system near the diagonal can be represented as a Hamiltonian system (Ω,H) on T ∗S
with Ω = Ωcan + ε2Ω1 + ... and H = Ho + ε2H1 + ..., where (Ωo,Ho) is the geodesic dynamics. Our current
work involves finding the explicit formulas for the deformation term Ω1 and perturbation H1 that can be
interpreted in terms of geometric quantities. If S is a Liouville surface possessing a homoclinic lagrangian
submanifold, one can apply a Melnikov test for non-integrability. The triaxial ellipsoid E :

∑3
j=1 x2

j/a2
j = 1

is a perfect arena for experimentation. Jacobi showed in 1838 that the geodesic problem is integrable. To
investigate the vortex motion, we can represent the ellipsoid over the sphere S2 :

∑3
j=1 γ2

j = 1 via the
dilations γj = xj/aj , and use sphero-conical coordinates in S2 (rather than confocal quadric coordinates on
E). The conformal factor to the sphere metric can be given in terms of elliptic functions. We plan to report
on numerical investigations on thems on a subsequent work. Not in our wildest dreams (but why not?) is
the possibility that quantizing a vortex system on a surface could relate with a million dollars question [2].
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