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       New results in the theory of quasigeostrophic (QG) singular vortices in one- and two-layer fluids are 
presented. On the f-plane, the singular vortex is a conventional point vortex, whereas on the β - plane the 
intrinsic vorticity of singular vortex contains an exponentially decaying term in addition to delta-function. 
The theory describes singular vortices interacting with each other and with some regular flow. Equations 
governing the joint evolution of the vortices and the regular field are set up, and the integrals expressing 
conservation of enstrophy, energy, momentum, and mass are derived. Using these integrals, the stability 
of a point-vortex pair on the f-plane is analyzed. Such vortex pairs are shown to be nonlinearly stable with 
respect to any small perturbation provided its regular-flow energy and enstrophy are finite. On the β - 
plane, a new steady exact solution is presented, a hybrid regular-singular modon. The modon consists of a 
regular dipole component and an axially symmetric rider which is a superposition of the singular vortex 
and a regular axially symmetric field. The unsteady drift of an individual singular vortex on the β - plane 
is considered. Whereas the barotropic and baroclinic modes of the singular vortex are comparable in 
magnitudes, the baroclinic part of β -gyres attenuates with time, making the vortex trajectory close to that 
of a barotropic monopole on the β -plane.  
 
Outline of work      
 
      The model is based on the well-known equations of conservation of QG potential vorticity: 
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where subscripts “1”, “2” correspond to the upper and lower layers, respectively, iψ  and  are the 
streamfunction and the intrinsic vorticity (IV) in i-th layer, respectively, and the constant coefficients 

 are determined by the model parameters. Each streamfunction 
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iii baF ,, iψ  is a sum of a regular 
component ri,ψ  and a singular component si,ψ which represents a superposition of  singular vortices 
having the constant amplitudes  and  moving along the trajectories 
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si,ψ  are determined by the equations: 

                                ,                                   (2) 2,1    ,)()(,,
2

, =−−=− ∑ iyyxxApq
i

i
iii

M

m
mmmisisi δδψ

where p is a positive constant and  are IVs (1b) with isq isψ  instead of iψ . If  then the singular 
vortices are the point ones; for  each the vortex contains an additional logarithmic singularity. Joint 
evolution of the singular vortices and the regular field is governed by the following equations: 
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Here im
si,ψ  is the streamfunction si,ψ  without the -th vortex; equation (3a) describes the regular 

component and equations (3b,c) - motion of the singular vortices. 
im

           System (3) conserves mass, momentum, energy, and enstrophy. The enstrophy integral Ω  and the 
energy integral E are of special interest:  
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Here 2211 bFaF−=α , and rE  and rS  are the energy and enstrophy of the regular component, 
respectively,       
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The sum of the last three terms in (5) is equal to the energy of interaction between the singular and 
regular components, and 
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The positive function  is the energy of interaction between singular vortices; in general case  is 
represented by a rather cumbersome formula and is not given here. 
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          The enstrophy and energy integrals (4), (5) were used for the analysis of stability of a point vortex 
pair on the f –plane, when 0== βp . In the absence of regular component such a pair either rotates with 
uniform angular speed or uniformly translates along some straight line, depending on the vortex signs and 
magnitudes. This motion is stable in the sense that small changes in the distance between the vortices 
result only in small changes of the pair velocity. Invariants (4) and (5) enable us to prove that the vortex 
pair is stable with respect to any localized and sufficiently small perturbation. The key point is that on the 
f - plane the regular IVs, , are conserved in the fluid elements in accordance with (3a), therefore the 

regular enstrophy 
riq ,

rS  is invariant. The estimates rrrri SCESC 21,   , <<ψ  can be shown to hold, where 

 are some coefficients that depend on the model parameters. Thus, if the enstrophy  is small at 
the initial moment, then the regular streamfunctions 
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ri,ψ  and the energy rE  remain small at subsequent 
times. By virtue of (5), this means that variations of the singular energy  are also small. In the case of 
two singular vortices, we get , where  is the distance between the vortices, and the 
function  is monotonic. Therefore, the smallness of variations of  means the smallness of 
variations of , i.e. the stability of the vortex pair. 
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          If amplitudes and coordinates of the singular vortices are set in a proper way, then the regular field 
is zero, and the vortices form a system moving along a latitude circle consty =  at a constant speed lying 
outside the range of the phase speeds of linear Rossby waves (for 0≠β ). Any system of such a kind is a 
discrete two-dimensional Rossby modon and, vice versa, any distributed Rossby modon is a superposition 
of the singular vortices concentrated in the interior region of the modon. Here we present a new two-layer 
modon solution consisting of a singular rider of an arbitrary amplitude driven by a regular dipole 
component. An important feature of this solution is that both the rider and the regular component are 
continuous up to the second derivatives (of course, excluding the point of the vortex singularity). 
Numerical experiments show that smooth modons can be stable or, at least, long-lived.  
          Dynamics of an individual intense localized vortex on the β -plane were widely discussed in the 
literature, and by now the evolutions of purely barotropic and purely baroclinic vortices are studied rather 
well. These two cases are very different. A purely barotropic vortex moves north- or southwestward 
depending on the vortex sign, and a purely baroclinic vortex tends to become a modon propagating 
eastward. Here we examine the evolution of an individual singular vortex confined to one of the layers. 
The barotropic and baroclinic components of such a vortex are comparable in magnitudes. Like the purely 
barotropic and baroclinic cases, the vortex produces a secondary dipole circulation (the so-called beta-
gyres) owing to the beta-effect and non-linearity. The barotropic part of the beta-gyres forces the vortex 
to move westward along some curved trajectory, and the baroclinic part tends to incline the vortex’s axis 
forcing the vortex to move eastward. The development of the beta-gyres is analyzed and the singular 
vortex drift velocity is calculated. The main result is that in the presence of a sufficiently strong 
barotropic mode in the initial vortex the baroclinic part of beta-gyres tends to zero with increasing time, 
so that the motion of the "mixed mode" vortex becomes similar to that of a barotropic vortex.  
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