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A mass-balanced, finite-difference solution to Münch’s osmotically generated pressure-flow
hypothesis is developed for the study of non-steady-state sucrose transport in the phloem
tissue of plants. Major improvements over previous modeling efforts are the inclusion of wall
elasticity, nonlinear functions of viscosity and solute potential, an enhanced calculation of
sieve pore resistance, and the introduction of a slope-limiting total variation diminishing
method for determining the concentration of sucrose at node boundaries. The numerical
properties of the model are discussed, as is the history of the modeling of pressure-driven
phloem transport. Idealized results are presented for a sharp, fast-moving concentration
front, and the effect of changing sieve tube length on the transport of sucrose in both the
steady-state and non-steady-state cases is examined. Most of the resistance to transport
is found to be axial, rather than radial (via membrane transport), and most of the axial
resistance is due to the sieve plates. Because of the sieve plates, sieve tube elasticity does not
provide a significant enhancement to conductivity at high pressure, as previously suspected.
The transit time of sucrose through a sieve tube is found to be inversely proportional to the
square of the sieve tube’s length; following that observation, it is suggested that 20 1-m-long
sieve tubes could transport sucrose 20 times faster than a single 20m sieve tube. Short sieve
tubes would be highly sensitive to differentials between loading and unloading rate, and
would require close cooperation with adjacent companion cells for proper function.

r 2003 Elsevier Science Ltd. All rights reserved.
1. Introduction

Water, nutrients, and other materials are trans-
ported within plants via two parallel cellular
conduit systems, each internally highly redun-
dant. These are the xylem, responsible for the
transport of water and nutrients from the soil
to the leaf, and the phloem, responsible for the
transport of photosynthates, amino acids, and
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electrolytes between various parts of the plant.
Transport in both systems is pressure-driven, but
while the pressure that drives xylem transport
is extrinsic to the systemFthat is, the requisite
energy comes from atmospheric evaporation
from leaf surfacesFthe pressure in the phloem
is produced by osmotically induced gradients
in free energy and depends on the loading and
unloading of solutes at the ‘‘source’’ and ‘‘sink’’
ends of the translocation pathway. Hydrostatic
pressure increases osmotically at the source as
solutes, such as sucrose, oligosaccharides, sugar
alcohols, electrolytes, amino acids and certain
r 2003 Elsevier Science Ltd. All rights reserved.
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organic and inorganic acids (Ziegler, 1975;
Zimmermann & Ziegler, 1975), are secreted into
the phloem conduit, and decreases at the sink
where those solutes are removed. The resulting
hydrostatic pressure gradient drives these solutes
from their ‘‘sources’’ to their ‘‘sinks’’, a type of
transport system called ‘‘osmotically generated
pressure flow’’ (OGPF). This mechanism was
first described for the phloem in the early part of
the 20th century (Münch, 1926, 1927, 1930) and
is currently the primary candidate mechanism
for long-distance metabolite transport in plants
(Komor et al., 1996; Köckenberger et al., 1997;
Ehlers et al., 2000; Eckardt, 2001; Patrick et al.,
2001).

At present, confidence in the capacity
of the OGPF hypothesis to account for observed
rates of phloem translocation is sufficiently
great that the resistance of the transport path-
way itself is no longer considered limiting
(Passioura & Ashford, 1974). Indeed, modeling
(Tyree et al., 1974; Goeschl & Magnuson,
1986) and empirical studies (Passioura &
Ashford, 1974; Magnuson et al., 1986) have
shown the OGPF hypothesisFin its simplest
formFto be a virtual certainty for small plants.
Additionally, the relatively recent recognition
that sieve plates are nominally clear of
P-proteins further justifies this certainty
(Knoblauch & van Bel, 1998; Eckardt,
2001; Knoblauch et al., 2001), and has
only bolstered the study of assimilate loading
in source tissues (van Bel & Gamalei, 1992;
van Bel, 1993; Komor et al., 1996; Turgeon &
Medville, 1998; Patrick et al., 2001) and
unloading in sink tissues (Oparka, 1990;
Farrar, 1993; Minchin & Thorpe, 1996; Patrick,
1997; Oparka & Turgeon, 1999; Oparka & Cruz,
2000), as well as the molecular biology of
the transfer of water, sucrose, and amine-
nitrogen between the phloem and xylem (Patrick
et al., 2001).

When applied to long distances, however, the
status of the OGPF hypothesis may be some-
what uncertain. While it is true that gradients in
both pressure (Zimmermann & Brown, 1980)
and solute potential (Hocking, 1980) have been
found along the trunks of large plants, and
transport velocities (of between 0.5 and
1.0mhr�1) have been measured that could cover
the requisite distances over sufficiently short
time-scales (Canny, 1973; Zimmermann &
Brown, 1980), the presence of such gradients
and transport rates does not necessarily satisfy
as to mechanism. For instance, while Tyree
et al. (1974) showed that OGPF is feasible

over very long distances (B50m), a quick
calculation of the sap flux densities reported in
their Fig. 7 shows that it would take over 15 days
for sucrose to be transported over that distance,
and even then only 1/50th of the sucrose would
arrive in the final meter. This is unsatisfactory
for a number of reasons. One would expect
source tissues to be reasonably responsive
to changes in assimilate consumption by sink
tissues, but a transit time of 15 days would put
the frequency response time of the source to no
less than that order of magnitude. Moreover,
molecules, such as hormones, which require
short transit times for their functions to be
meaningfully felt, would take so long to move
from the leaves to the roots that their relevance
to the plant would become somewhat dubious.
Thus, as currently understood, the classical
pressure-flow scheme of Münch may be insuffi-
cient over long distances. One way around this
problem would be for the phloem to relay
assimilates from one sieve tube to the next, thus
making use of metabolic energy to overcome the
high intrinsic and viscous resistances to flow
(Lang, 1979; Aikman, 1980; Murphy & Aikman,
1989). This ‘‘relay hypothesis’’ leads to the
suggestion that perhaps individual sieve tubes
are quite short, though the transport distance
is very long.

However, even over distances of a meter or less,
there are a number of unanswered questions
about how the plant controls the concentration of
assimilates in the sieve tube, and how it is
coordinated such that the assimilate concentra-
tion of a sieve tube does not alternately crash and
boom with small deviations or phase shifts
between loading and unloading. Many of these
questions cannot be answered using the model
systems currently in vogue. The shift in focus
from long-distance transportFconsidered largely
‘‘solved’’ in the 1970s and 1980sFtoward solute
loading and unloading, both allowed and required
that one work on plants whose transport path-
ways were relatively short. Until methodology
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meets the task of directly experimenting with
phloem transport in large plants and over long
distances, our approach should include top-down
analyses of the potential constraints on phloem
transport, and the functioning of the phloem in
the context of the entire vascular system. But to
do so requires the construction of a model of non-
steady-state phloem transport that can account
for its mathematical nonlinearities, a model more
sophisticated than any model currently available
(Table 1).

Here, we present a fully implicit, finite-
difference, 100% mass-balanced, sucrose-only
solution to Münch pressure flow. The model can
Tabl
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numerical methods used in this model, tests of
model accuracy against spatial and temporal
resolution, and justifications of the use of the
Hagen–Poiseuille flow equation through sieve
tubes and pores.

2. Model Description

Here we describe a robust, sucrose-only, non-
steady-state, numerical solution to the OGPF
hypothesis (Fig. 1), which makes a number of
improvements to previous models, including wall
elasticity, nonlinear functions of viscosity and
solute potential, an enhanced calculation of sieve
pore resistance, and the introduction of a slope-
limiting total variation diminishing (TVD)
method for determining the node boundary
sucrose concentration (Table 1). A history of
(A)

(B)

Fig. 1. A schematic of an idealized sieve tube. (A) Sucro
unloaded at the ‘‘sink’’ end, leading to a gradient in sucrose co
shading from source to sink). As sucrose concentration increa
apoplast, following a gradient in water potential; as conce
generated by w (and by b; since the sucrose has a non-zero volu
of both volume j and solute js: The sieve tube is of length LF
LFand is subdivided into three zones, the loading zone, the
unloading zones are both of length d ; where the loading zone e
z ¼ L2d to L: (B) The sieve tube is subdivided into cellular sec
element is bounded at its ends by a sieve plate of thickness lp
times greater than that of the sieve element lumen, i.e. b51;
element exposes the geometry of the sieve plate, which is show
sized, circular sieve plate pores. The model parameter a is th
divided by the transverse cross-sectional area of sieve element.
plates are positioned obliquely instead of transversely as show
previous models of the OGPF hypothesis is
given in Appendix A. Our formulation makes
the following assumptions:

(1) The sieve tube walls are smooth with a
circular perimeter, and are interspersed with
transverse, perpendicular sieve plates that impose
an additional resistance to bulk flow, adding in
series to that of the sieve element lumen.

(2) The sieve plates are simple (that is, they
contain only one sieve area) and the pores
contained therein are all of equal size, circular
shape, and equal length; they are distributed
homogeneously throughout the plate, and have a
zero-value reflection coefficient with respect to
sucrose.

(3) The Hagen–Poiseuille flow relation gov-
erns the local axial movement of sapFlaminar
(C)

se is loaded (b) at the ‘‘source’’ end of the sieve tube and
ncentration along the sieve tube (as shown by decreasing gray
ses, water flows into the sieve tube (w) from the surrounding
ntration decreases, water flows out. The pressure gradient
me, thus affecting the pressure) is what induces the axial flow
where z denotes the distance along the tube from z ¼ 0 to

intermediate zone, and the unloading zone. The loading and
xtends from z ¼ 0 to d ; and the unloading zone extends from
tions called sieve elements of length l and radius r: Each sieve
containing pores of radius rp: Sieve plate resistance is several
see Appendix B. (C) A longitudinal cross-section of a sieve
n here to be circular and possessing a regular array of equally
e summed cross-sectional area of all the pores in the plate,
Note that a can be greater than or equal to unity if the sieve
n here.
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flow with a parabolic velocity profile is
rapidly established following entry to each sieve
element, inertial and gravitational effects of the
Navier–Stokes equation can be ignored, and
despite a small amount of flow across the
membrane walls, a parabolic velocity profile is
maintained throughout the sieve element
(Appendix B).

(4) Flow through the sieve pores is a linear
function of the pressure difference across the
sieve plate and is governed by the Hagen–
Poiseuille flow relation plus an additional term
called the Sampson factor, described in Appen-
dix B.

(5) Sucrose is the only solute.
(6) The sieve tube plasma membrane is ideally

semi-permeable, i.e. the reflection coefficient for
sucrose is unity.

(7) Radial solute diffusion is rapid relative to
axial convection such that the radial sucrose
concentration gradient is effectively zero.

(8) Axial molecular diffusion and dispersion
are small relative to axial solute convection, and
can be ignored.

(9) The sieve tube’s cross-sectional area
expands with pressure in a linear elastic manner
according to a generalized expression for the
drained pore modulus (or volumetric elastic
modulus) of the phloem tissue.

Assumptions (3) and (4) are justified in
Appendix B while assumptions (7) and (8) are
justified in Appendix C. Assumption (9) is
justified if the volumetric expansion is small.

The initial and boundary conditions of the
model are at the discretion of the user, provided
that flow through the end walls of the tube
(at z ¼ 0 and L) is zero (Neumann boundary
condition), where z (m) is the distance along the
sieve tube and L (m) is the length of the sieve
tube. All symbols are defined in the text and in
Table 2. The governing equations are summar-
ized in Table 3. Diagrams of the relevant control
volumes are given in Fig. 2. Solutions are arrived
at by numerically solving a coupled pair of
nonlinear partial differential equations (PDEs)
for the temporal and spatial evolution of
pressure and sucrose in a long, linearly elastic,
membrane element, where the membrane is semi-
permeable to water, and sucrose is loaded into
the membrane element at one end of the tube
ð0ozodÞ over a loading distance d (m)
and unloaded at the other end of the tube
ðL � dozoLÞ over the same distance d:

2.1. GOVERNING EQUATIONS

2.1.1. Cross-Sectional Area

The concentration of sucrose per unit length
of sieve tube cl [mol (m length)�1] is equal to the
concentration per unit volume c (molm�3) times
the cross-sectional area of the tube a (m2) :

cl ¼ ac; ð1Þ

and it is assumed that sucrose is homo-
geneously distributed with respect to r: The
cross-sectional area of the sieve tube is assumed
to be an elastic function of lumen pressure.
If the length of the sieve tube is constant
with pressure, then the drained pore modulus
(or volumetric elastic modulus, in plant physio-
logical terms) is given by e ¼ V ðdp=dV Þ ¼
aðdp=daÞ; where

da

dp
¼

a

e
; ð2Þ

Here p (MPa) is the hydrostatic pressure in the
sieve tube lumen, and e (MPa) is the drained
pore modulus of the phloem tissue. It is
assumed, over a reasonable range of sieve tube
pressures, that the drained pore modulus is
constant, even though at modest strains this
may not be the case (Wu et al., 1985). Sieve tube
cross-sectional area as a function of pressure is
given by

a

ao

¼ eð p�poÞ=e; ð3Þ

where ao and po are the initial cross-sectional
area and pressure of the sieve tube.

2.1.2. Axial Flow

The axial flux of sucrose js (mol s�1) is
the product of c and the axial flux of sap j
(m3 s�1) :

js ¼ cj: ð4Þ



Table 2
Summary of symbols

Symbol Description Units

a, Ai Cross-sectional area of sieve tube m2

as Activity of sucrose mol (kg solution)�1

b, Bi Sucrose loading (or unloading) rate mol (m length)�1 s�1

bunload Mean unloading rate in the unloading zone mol (m length)�1 s�1

c, Ci Sucrose concentration molm�3

dCm
i Concentration correction term molm�3

cl Length-specific sucrose concentration mol (m length)�1

cload Mean concentration in the loading zone molm�3

cunload Mean concentration in the unloading zone molm�3

Cr Courant number, Cr ¼ vDt=Dz Dimensionless
cn Set point sucrose concentration for unloading zone molm�3

d Length of loading or unloading zone m
Di Coefficient of membrane water flux defined

in eqn (D.10)
m3 (m length)�1 s�1MPa�1

Dm Molecular diffusion coefficient m2 s�1

f Spatial node frequency ðN=LÞ nodes (m length)�1

Fi Bookkeeping coefficient defined in eqn (D.34) mol (m length)�1(m2 cross-section)�1MPa�1

Gi Derivative of cp with respect to c MPa (molm�3)�1

Hi Bookkeeping coefficient defined in eqn (D.21) m3 (m length)�1 s�1MPa�1

i Subscript referring to node number (e.g.: Anþ1;m
i ;

which is a in node i at time step number n þ 1
and iteration number m)

Dimensionless

j; Ji Axial volume flux rate in sieve tube m3 s�1

dJm
i Axial volume flux rate correction term m3 s�1

js; Js;i Axial molar flux rate of sucrose in sieve tube mol s�1

jp Volume flux rate through a single sieve pore m3 s�1

k Axial conductivity of sieve tube defined in eqn (6) m3 (m length) s�1MPa�1

K Axial conductance of sieve tube defined in eqn (D.19) m3 s�1MPa�1

l Distance between sieve plates (the length of a
sieve element)

m

lp Thickness of sieve plate m
L Length of the sieve tube (the transport distance) m
Lp Sieve tube plasma membrane permeability m3 (m2membrane area)�1 s�1MPa�1

m Superscript referring to the iteration number
(see i), also the molality of a sucrose solution
(same units as as)

Dimensionless

n Superscript referring to the time step number (see i) Dimensionless
N Number of nodes in the model domain Dimensionless
Np Number of sieve pores per sieve plate Dimensionless
p, Pi Hydrostatic pressure in sieve tube lumen MPa
dPm

i Pressure correction term MPa
Dplumen Axial pressure drop within a single sieve

element (not including sieve plates)
MPa

Dppore Pressure drop across a single sieve pore due to
the Hagen–Poiseuille (H–P) pressure drop alone

MPa

Dpn
pore Total pressure drop across a single sieve pore,

including both the H–P and Sampson
(S) pressure drops

MPa

Dppore;Sampson Pressure drop across a single sieve pore due
to the S effect alone

MPa

DpT Total axial pressure drop over a single sieve
element plus an adjoining sieve plate

MPa

Qi Estimate of dCm used in solution of eqn (D.28) molm�3

r, Ri Radius of sieve tube m
rp Radius of sieve pores m
R Universal gas constant MPam3 kg�1K�1

Si Bookkeeping coefficient defined in eqn (D.16) m3 (m length)�1 s�1

t Time s; hr
Dt Time step length s
T Temperature K
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Ui Bookkeeping coefficient defined in eqn (D.34) mol (m2 cross-section)�1 (m length)�1

v Sap flux density m s�1; cmhr�1

vs Axial molar flux density of sucrose ðdozoL � dÞ mol (m2 cross-section)�1 s�1

v0s vs at steady state in the intermediate zone
ðdozoL2dÞ

mol (m2 cross-section)�1 s�1

Vi Volume of sieve tube m3

Vs Partial molal volume of sucrose m3mol�1

w, Wi Membrane water flux rate m3 (m length)�1 s�1

Xi Generic state variable Dimensionless
dX m

i Generic state variable correction term Dimensionless
z Axial distance along the sieve tube m
Dz Node length m
a Ratio of combined cross-sectional area of the

sieve pores to the transverse cross-sectional
area of sieve tube

Dimensionless

b Sieve plate impedance factor Dimensionless
gs Activity coefficient of sucrose Dimensionless
e Phloem tissue drained pore modulus MPa
z Relative amplitude of sine impulse function Dimensionless
Zz Energy dissipation in axial flow of sieve tube sap Jm�1 s�1

Zc Energy dissipation in loss of sucrose
chemical potential

Jm�1 s�1

Zr Energy dissipation in flow of water across
bounding membranes

Jm�1 s�1

y System state; pressure–volume or
concentration–volume

MJ; mol

m Dynamic viscosity of sieve tube sap MPa s
ms Chemical potential of sucrose MJmol�1

mn
s Chemical potential of sucrose at standard state MJmol�1

rw Density of water kgm�3

s The standard deviation Dimensionless
t Transit time s; hr
f Phase shift s; hr
j Sampson factor Dimensionless
w Fractional displacement of the current system

state from steady state (convergence estimate)
Dimensionless

co; Co
i Water potential of the apoplast external to

the sieve tube
MPa

cp; Cp;i Solute potential of sieve tube sap MPa
dCm

p;i Solute potential correction term MPa

When paired, the upper case letter refers to the discrete version of the lower case letter.

Table 2 (continued)

Symbol Description Units
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Note that we neglect an axial diffusion term (see
Appendix C). Axial sap flow is calculated locally
according to the Hagen–Poiseuille flow relation
(see Appendix B):

j ¼ �k
@p

@z
; ð5Þ

where k [m3 (m length) s�1MPa�1] is the hy-
draulic conductivity of the sieve tube (assuming
cylindrical geometry):

k ¼ b
pr4

8m
: ð6Þ
Here m (MPa s) is the dynamic viscosity of
the solution as a function of sucrose con-
centration and temperature (Bouchard &
Grandjean, 1995), and r (m) is the sieve tube
radius. Temperature is set to a constant 293K
throughout the model domain. The dimension-
less sieve plate factor b (derived in Appendix B)
is given by

b ¼
ajr2pl

ajr2pðl � lpÞ þ r2lp
; ð7Þ

and represents the degree to which the presence
of sieve plates reduces the conductivity of the



Table 3
Summary of state variables and governing equations used in this simulation, as well as the fully expanded

analytical equations for volume and sucrose conservation

Description Governing equations Boundary and initial conditions

State variables and initial conditions

p ¼ pðz; tÞ

c ¼ cðz; tÞ

r ¼ rðz; tÞ

9>=
>; for 0ozoL

pðz; 0Þ ¼ 0

cðz; 0Þ ¼ 0

rðz; 0Þ ¼ roðzÞ

aoðzÞ ¼ proðzÞ
2

Cross-sectional area and concentration cl ¼ a c

Cross-sectional area and pressure
da

dp
¼

a

e

a

ao

¼ eðp�poÞ=e

Axial flow of sucrose js ¼ c j (with slope limits)

Axial flux of solution j ¼ �k
@p

@z
j ¼ 0 for z ¼ 0;L

Passive membrane water flux
(cp ¼ nonlinear function of c)

w ¼ 2prLp½c
o � ðp þ cpÞ
 coðz; tÞ ¼ 0

Volume conservation statement
@a

@t
¼ Vsb þ w �

@j

@z

Solute conservation statement
@cl

@t
¼ b �

@js

@z

Loading and unloading of sucrose

b ¼
av0s
d
; 0ozod

b ¼ 0; dozoL � d;

b ¼ �
av0s
d

c

cn
; L � dozoL

Note: Fully expanded volume conservation equation

aðpÞ
e

@p

@t
¼ Vsbðc; t; zÞ þ 2prðpÞLp½c

oðt; zÞ � ðp þ cpðc;TÞÞ
 þ
@

@z
b

prðpÞ4

8mðc;TÞ
@p

@z

� �
:

Fully expanded sucrose conservation equation

cað pÞ
e

@p

@t
þ aðpÞ

@c

@t
¼ bðc; t; zÞ þ

@

@z
cb

prðpÞ4

8mðc;TÞ
@p

@z

� �
:

The solution of these equations finds p and c as a function of distance along the sieve tube z and as a function of
time t:
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sieve tube. a is the combined cross-sectional area
of all pores in the plate divided by the transverse
cross-sectional area of the sieve tube (dimension-
less), rp (m) is sieve pore radius, l (m) is sieve
element length or the distance between
sieve plates, lp (m) is pore length, and j is the



(A)

(B)

Fig. 2. (A) A diagrammatic outline of the volume
conservation control volume used in this simulation.
Fluxes included in volume conservation are the axial fluxes,
across both the z- and z+ faces, the membrane water
flux w; the sucrose loading flux b; and the volumetric
expansion of the sieve tube. (B) A diagrammatic outline of
the sucrose conservation control volume. Included are the
axial fluxes, the sucrose loading flux, and the change in
solute content of the control volume. See Section 2.1.4 for
more details.
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dimensionless Sampson factor, incorporating the
non-zero resistance of zero-length sieve pores
(see Appendix B).

2.1.3. Membrane Water and Sucrose Flux

The irreversible flow of water w [m3

(m length)�1 s�1] across the plasma membrane
is positive inward (Kedem & Katchalsky,
1958):

w ¼ 2prLp½c
o � ð p þ cpÞ
; ð8Þ

where Lp [m3 (m2membrane area)�1 s�1MPa�1]
is the membrane permeability, co (MPa) is the
water potential of the surrounding apoplast, and
cp (MPa) is the phloem sap’s osmotic potential
(or solute potential, as it has been historically
referred to in the plant physiology literature),
given by (Michel, 1972) :

cp ¼ �rwRTð0:998 m þ 0:089 m2Þ; ð9Þ

where rw [998.03 kgm�3] is the density of water,
R (8.3143� 10�6MPam3 kg�1K�1) is the uni-
versal gas constant, and T (K) is the temperature
of the solution. m is the molality [mol (kg of
solvent)�1]:

m ¼
c

rwð1� cVsÞ
; ð10Þ

where Vs [2.155� 10�4m3 mol�1] is the partial
molal volume of sucrose (Eszterle, 1993), which
is independent of concentration as long as the
solution is sub-saturated.

Sucrose loading and unloading into and out
of the sieve tube b [mol (m length) �1 s�1] is one of
the boundary conditions of the simulation defined
by the user and is defined on a unit length basis.
The product of b and Vs is the volume flux of
sucrose into and out of the sieve tube.

2.1.4. Conservation Equations

Mass conservation of solution and sucrose are
described by PDEs based on an appropriate pair
of control volumes, one for volume and the
other for sucrose conservation (Fig. 2). Volume
conservation is given by the following continuity
equation:

@a

@t
¼ Vsb þ w �

@j

@z
: ð11Þ

We recognize that volume is not typically
considered a conserved quantity, but it is
analytically more straightforward than mass,
and in this system, where rw and Vs are held
constant, the substitution of volume for mass is
allowed.

The conservation of sucrose is written as

@cl

@t
¼ b �

@js

@z
; ð12Þ

which, after inserting eqns (1) and (4), gives

@ðcaÞ
@t

¼ b �
@ðcjÞ
@z

: ð13Þ
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2.1.5. Coupled System of PDEs

Equations (11) and (13) are a system of
coupled, nonlinear PDEs, and can be expressed
entirely in terms of pressure and concentration,
where T ; co; and b are prescribed:

aðpÞ
e

@p

@t
¼Vsbðc; t; zÞ

þ 2prðpÞLp½c
oðt; zÞ � ð p þ cpðc;TÞÞ


þ
@

@z
b

prðpÞ4

8mðc;TÞ
@p

@z

� �
; ð14Þ

where co is a function of time and distance along
the sieve tube, b is a function of concentration,
distance and time, e; Vs; Lp and b are constant
model parameters, a and r are functions of
pressure according to eqn (3), and cp and m are
functions of concentration and temperature. The
sucrose conservation equation can be similarly
expanded:

caðpÞ
e

@p

@t
þ að pÞ

@c

@t

¼ bðc; t; zÞ þ
@

@z
cb

prðpÞ4

8mðc;TÞ
@p

@z

� �
: ð15Þ

Note that coupled systems of nonlinear PDEs
of this kind cannot be solved analytically, and
that the analytical expansion of eqns (11) and
(13) given in eqns (14) and (15) cannot be
discretized given the inapplicability of the chain
rule over large changes in p or c at low spatial or
temporal resolutions. Instead, our approach, as
outlined in the following section and Appendix
D, is to prepare eqns (11) and (13) for numerical
analysis by spatial and temporal discretization.
Equations (14) and (15) can be viewed as guides
to the complexities and nonlinearities of model-
ing solute transport in a narrow semi-permeable
membrane-bound system. Note that we have not
explicitly included gravitational effects because
they are only important in the presence of large
differences in the density of xylem and phloem
sap, as discussed in Appendix B (see also
Milburn, 1975).
2.2. DISCRETIZATION OF GOVERNING EQUATIONS

We use a fully implicit, finite-difference
approach to the solution of eqns (11) and (13)
described in Appendix D (Nielsen et al., 1986;
Milly, 1988; Istok, 1989; Celia et al., 1990),
known as the modified Newton–Raphson
method, with a slope-limiting TVD method
for determining sucrose concentrations at node
boundaries in regions with sharp and fast-
moving concentration fronts (Ewing & Wang,
2001). The use of these methods dramatically
improves the stability and accuracy of the
solution over other time-discretization methods.
To denote time step and iteration number, we
use the notation of Celia et al. (1990), where the
superscript n denotes time step number and the
superscript m denotes iteration number (Appen-
dix D). For a clear explication of the numerical
methods implemented here, the groundwater
and unsaturated soil water flow literature is
particularly useful (Wang & Anderson, 1982;
Nielsen et al., 1986; Milly, 1988; Istok, 1989;
Celia et al., 1990).

Equations (11) and (13) are rewritten in their
discrete form:

@

@t
ðAnþ1; mþ1

i Þ ¼W nþ1; mþ1
i þ VsB

nþ1; m
i

�
@

@z
ðJnþ1; mþ1

i Þ; ð16Þ

and

@

@t
ðCnþ1; mþ1

i Anþ1; mþ1
i Þ

¼ Bnþ1; m
i �

@

@z
ðCnþ1; mþ1

i Jnþ1; mþ1
i Þ:

ð17Þ

The simulated sieve tube is subdivided into
nodes of length Dz denoted by the subscript i;
into time steps of length Dt denoted by
the superscript n; and into iterations within
those time steps denoted by m: Because B is
prescribed, it is written in terms of the ðn þ
1; mÞ-th iteration in contrast to the other
variables. Note in eqns (16) and (17) that A

depends on pressure, B on concentration, and
W and J on pressure (including gradients in
pressure) and concentration. The use of the
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ðn þ 1Þst time step is indicative of the backward-
differencing or fully implicit method employed
(Appendix D). In each iteration, eqn (16)
is solved for a pressure correction term (accord-
ing to the modified Newton–Raphson method),
from which revised pressures, axial flow rates
and cross-sectional areas are calculated. The
revised estimates of J and A are then used to
solve eqn (17) for the sucrose concentration
correction term. Sucrose concentrations are then
revised, and the state of the system is checked for
mass conservation. If volumetric and solute
conservation is not met, another iteration is
performed, using the new estimates of P and C
as baselines for the next set of corrections, as
well as the basis for recalculating K (conduc-
tance) and B (loading rate). The test for
conservation of volume and solute is discussed
in Appendix E.

2.3. SUCROSE LOADING AND UNLOADING AND

GRADIENTS IN EXTERNAL WATER POTENTIAL

Sucrose loading and unloading can be defined
in terms of t and z in any number of ways,
as long as there is a closed-form solution
(Goeschl et al., 1976). In this work, sucrose is
loaded and unloaded in the loading and unload-
ing zones such that in the intermediate zone, at
steady state, the axial sucrose flux density v0s is
0.225mol (m2 cross-section)�1 s�1 (Lang, 1978).
With this condition, b is given by

b ¼
av0s
d
; 0ozod;

b ¼ 0; dozoL � d;

b ¼ �
av0s
d

c

cn
; L � dozoL;

9>>>>=
>>>>;
; ð18Þ

where cn is a concentration set point (set
arbitrarily to 500molm�3). cn imposes a con-
centration boundary condition on the unloading
zone, where at steady state the mean concentra-
tion in that zone, cunload ; equals cn: Conversely,
the mean concentration in the loading zone,
cload ; is set by v0s: Here, d ¼ 0:5m and
r ¼ 7:5� 10�6 m, so in the loading zone b is
7.952� 10�11mol (m length)�1 s�1.

The water potential of the surrounding
phloem tissue co is also prescribed by the user.
Here, to simplify, it is set to 0.0MPa for all t
and z:

2.4. ENERGY DISSIPATION AS AN INDEX

OF RESISTANCE

The movement of solution through the sieve
tube system is primarily limited by two passively
resistive factors, the resistance to axial flow
through the sieve elements and across the sieve
plates, and the resistance to water transport
across the plasma membrane. To compare the
relative contributions of membrane vs. axial flux
in resisting the flow of sap through the sieve
tube, we use the irreversible energy dissipation
rate of the two processes as a proxy.

According to irreversible thermodynamics,
dissipative energy loss is the product of the flow
rate and the gradient in potential energy driving
that flow. Because the application of the Hagen–
Poiseuille flow relation is locally justified, this
approximation is very good. For axial sap flow,
energy dissipation Zz [J (m length)�1 s�1] is given
by

ZzE� j
dp

dz
� 106: ð19Þ

The factor 106 is the conversion from MJ to J,
which is a more convenient unit. Flow across the
bounding membrane dissipates energy at a rate
Zr [J (m length) �1 s�1], where

ZrEwðco � p � cpÞ � 106: ð20Þ

Energy stored in the chemical potential of the
sucrose is also lost as a drop in pressure and
concentration, lowering the useful work the
sucrose can perform as it is unloaded. This
dissipation Zc [J (m length)�1 s�1] is given by

ZcE� js
dms

dz
� 106; ð21Þ

where ms (MJ mol�1) is the chemical potential of
sucrose in solution, given by

ms ¼ RT ln as þ Vsp þ mn

s ; ð22Þ

where mn
s (MJmol�1) is the chemical potential of

sucrose at standard state (this drops out since it
is a constant within the model domain), and as

[mol (kg of solution) �1] is the activity of sucrose
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in solution given by

as ¼ gsm; ð23Þ

where gs (dimensionless) is the activity coeffi-
cient. We assume that gs does not change with
concentration, so it also drops out. The gradient
in chemical potential from one point in the sieve
tube ðaÞ to the next ðbÞ; assuming the activity
coefficient of sucrose varies little between those
points, is given, following integration, by

Dms

Dz

				
a-b

¼
ðRT ln mb þ VspbÞ � ðRT ln ma þ VspaÞ

Dz
:

ð24Þ

Integrating each of these quantities, Zz; Zr;
and Zc; across the model domain gives the
total energy consumption of each irreversible
flux.

3. Results and Discussion

The phloem model constructed in this
work, implemented in MATLAB v6.1 (The
MathWorks, Inc., Natick, MA, U.S.A.) and
available from the authors upon request (Phloem
Simulation, v2.2, Harvard University), is robust,
even under sharp, fast-moving concentra-
tion fronts, and provides stable results to
Courant numbers of upto Cr ¼ 0:4 (see Appen-
dix F). The following section describes example
output from the simulation, calculates the
dissipative energetic losses due to frictional and
chemical potential dilution effects, and explores
the steady-state and non-steady-state implica-
tions of the OGPF hypothesis over long
distances.

All simulations in this paper describe a sieve
tube of length L ¼ 5m, and loading and
unloading zone of lengths d ¼ 0:5m at opposite
ends of the tube (see Fig. 1 for geometry), unless
otherwise noted. The steady-state sucrose flux
density v0s in the intermediate zone is 0.225mol
(m2 cross-section)�1 s�1, with a concentration set
point cn of 500molm�3, as described in Section
3.3. The tissue drained pore modulus e is 17MPa
(Lee, 1981; Sovonick-Dunford et al., 1982),
and the membrane conductivity Lp is set to
5.0� 10�8m3 (m2 membrane area) �1 s�1MPa�1

(Tyree, 1970; Lang, 1978). The external tissue
water potential co is set to 0.0MPa.

We use the sieve plate geometry of Lang
(1978). Each sieve element has an initial radius r
of 7.5mm and has a fixed length l of 250 mm. The
sieve plate thickness lp is 0.5 mm, with a sieve
pore radius rp of 0.23mm, the combined areas of
which comprise 50% ða ¼ 0:5Þ of the total cross-
sectional area of the sieve tube (in this case,
approximately 530 sieve pores per plate). These
values are consistent with those given by Weath-
erley & Johnson (1968) and summarized by
Tyree et al. (1974). Following eqn (7), this
geometry imposes an axial flow reduction factor
b of 0.132, i.e. axial conductivity under this
geometry is 13.2% of its value in the absence of
sieve plates.

3.1. EXAMPLE OF NON-STEADY-STATE RESULTS:

A SHARP CONCENTRATION FRONT

To demonstrate the numerical stability of the
simulation, it is necessary to expose it to an
extreme situation, in this case the approach to
steady state from a zero-pressure, zero-concen-
tration initial condition. In nature, concentra-
tion fronts this large or abrupt would be seldom
found, nor is it likely that such a large jump in
loading rate (in this case from zero) would ever
be observed. However, trust in the model can be
effectively established if exposed to extreme
conditions. The results of a 1-day simulation of
the time evolution of pressure, sucrose concen-
tration, axial solution flux, and membrane water
flux are shown in Fig. 3, and the results at 24 hr
are qualitatively similar to the steady-state
results of other workers (Christy & Ferrier,
1973; Tyree et al., 1974; Goeschl et al., 1976).
Here the spatial resolution is f ¼ 200 nodesm�1,
and the time step length is Dt¼ 1.0 s. The influx
of water progressively dilutes the sucrose, lead-
ing to a drop in c and an increase in j with z
(Tyree et al., 1974; Phillips & Dungan, 1993).
The pressure front propagates ahead of the
sucrose front, creating a zone beyond the sucrose
front where water is osmotically driven from the
sieve tube, and just behind it where water is
osmotically drawn from the surrounding tissue.



Fig. 3. The time evolution over a 24 hr period of pressure p; concentration c; axial volume flux j; and membrane water
flux w in an idealized sieve tube of length L ¼ 5m, and high spatial ( f ¼ 200 nodesm-1) and temporal (Dt¼ 1 s) resolution,
as described in Section 3.1. The simulation is begun with the initial conditions rðz; 0Þ¼ 7.5� 10�6m, pðz; 0Þ¼ 0MPa, and
cðz; 0Þ¼ 0molm-3, and is performed with an axial sucrose flux density v0s of 0.225mol (m2of cross-section)�1 s–1,
corresponding to a constant loading zone sucrose membrane flux b of 7.952� 10–11mol (m length)–1 s-1. As in all simulations
described in this paper, e is set to 17.0MPa, cn to 500molm-3, Lp to 5.0� 10�8m3 (m2 of membrane area)�1 s�1MPa�1, co

to 0.0MPa, l to 250 mm, lp to 0.5mm, rp to 0.23mm, and a to 0.5. From the sieve plate geometry employed here, we calculate
a b value of 0.132Fi.e. sieve tube axial conductivity is only 13% of what it would be in the absence of sieve plates. The gray-
shaded areas represent the loading (left) and unloading (right) zones of the model domain, each of length d ¼ 0:5m.
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Sap flux density v (velocity) is at its greatest at
this point.

The sucrose front develops in the first 0.5m of
the tube and requires 3.0 hr to reach the far end.
The simulation comes to within 5% of steady
state for both pressure and sucrose concentra-
tion after approximately 17 hr, and by the end of
the simulation, at 24 hr, sucrose content has
come to approximately 1.3% of steady state,
while pressure-volume has come to within 1.7%.
The derivation of these convergence estimates is
given in Appendix E.

Sovonick-Dunford et al. (1982) measured the
drained pore modulus of phloem tissue and,
assuming the sieve tubes expanded with the same
elastic coefficient as the bulk tissue, inferred a



Fig. 4. Energy dissipation as a function of distance
along the sieve tube due to the axial bulk flow of solution
Zz; the flow of water across the bounding membrane Zr; or
the loss in chemical potential of sucrose with distance along
the tube Zc: Energy dissipation in this system is dominated
by the axial resistance of the sieve tube and sieve plates.
This suggests that the majority of the ‘‘resistance’’ to
phloem transport is due to the sieve plates (i.e., b¼ 0.132),
and that the conductivity of the membranes bounding the
sieve element lumina is more than enough at this surface-to-
volume ratio to accommodate membrane water transport.
The decline in chemical potential during transport does not
appear to be a significant dissipative loss.
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sieve tube modulus of 17MPa, conjecturing that
this expansibility could increase the conductivity
in periods of transiently high pressure (Lee,
1981; Sovonick-Dunford et al., 1982). It appears,
however, that in the presence of sieve plates, an
expansion-driven increase in conductivity would
be relatively modest. We found that the pressur-
ization, from 0.0MPa at t ¼ 0 hr to a mean
pressure of 3.05MPa at t ¼ 24 hr, led to a sieve
tube expansion of 20% from an initial volume of
0.88mm3, which corresponded to a 9.4% in-
crease in radius. In the absence of sieve plates,
this increase in radius would mean a 43.5%
increase in axial conductivity, but in the presence
of sieve plates there is almost no increase at all.

The mean concentration of sucrose in the sieve
tube at steady state is 892molm�3 (27.5% w/w),
corresponding to a solute potential of
�3.05MPa, equal and opposite in magnitude
to the hydrostatic pressure. The pressure gradi-
ent along the entire sieve tube is �0.68MPam�1,
and �0.75MPam�1 excluding the loading and
unloading zones. The mean steady-state sap
velocity is v ¼ 2:0� 10�4 m s�1 (or 73.2 cmhr�1).

We calculated the dissipative loss of energy
associated with axial and membrane fluxes, and
the drop in the chemical potential of sucrose as
it flows along the sieve tube, Zz; Zr; and Zc;
respectively (Fig. 4). Over the entire model
domain, these losses account for dissipative
energy fluxes of 1.51� 10�7, 3.98� 10�9, and
7.36� 10�9 J s�1, respectively. Irreversible en-
ergy dissipation in axial flow is over 40 times
greater than loss due to wall flow, and it would
be fair to assume that transport under this
geometry and these boundary conditions is
limited predominantly by axial resistance to
flow, and that resistance to the membrane
transport of water plays only a minor role.

3.2. LONG-DISTANCE TRANSPORT

The purpose of producing such a detailed and
robust model of non-steady-state OGPF is to
answer questions about the limitations of the
theory over very long distances, and to deter-
mine the sensitivity of sieve tube concentration
to changes in loading and unloading rate. With a
steady-state model, only the first-order transport
characteristics of the system can be calculatedF
such as the time it takes for solute to go from
one end to the other, or the transport velocity or
resistance. However, in cases where loading or
unloading rates changes in a non-uniform
manner, or both the apoplastic water potential
and loading rates are varied simultaneously, a
steady-state model would obviously be insuffi-
cient. In this section, we present steady-state
results for ceteris paribus sieve tubes of varying
lengths to calculate the limiting effect that
increasing distance could have on the proper
physiological functioning of the plant. We are
not attempting to determine absolute efficacy,
answering questions like ‘‘does long-distance
transport work at distances over 25m?’’, as it
would be impossible to do so except on a species
by species basis using studies of anatomy and
physiology far more detailed than those avail-
able to us here. Rather, we wish to know the
effect of increasing the sieve tube’s length on its
function. After presenting steady-state results,
we give non-steady-state results that show the
effect of small diurnal perturbations in unload-
ing rate on the concentration of sucrose in the
loading and unloading zones.
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3.2.1. Transport Distance

Five simulations were performed to within
0.001% of steady state for sieve tubes matching
the geometry of the sieve tube described in
Section 3.1, but with different lengths L ¼ 1; 2,
5, 10, and 20m. We imposed the arbitrary
boundary condition that the mean loading zone
concentration cload be equal to 1250molm�3

(37% w/w sucrose) and that the mean unload-
ing zone concentration cunload be equal to
500molm�3 (16.1% w/w sucrose). cunload is set
automatically during the course of a simulation
by eqn (18) to equal cn; but cload can only be set
by varying the loading rate b: As such, each sieve
tube simulation was performed iteratively until
we found the value of b that gave us a value
of cload equal to 1250molm�3. cload was set
arbitrarily high to give liberal estimates of sap
flux density, and for the sake of argument make
as good a case as possible for transport over very
long distances.

Figure 5 shows diagnostic data for each of
these five simulations, including the sap flux
density v (m s�1), the solute flux density vs

[mol (m2 cross-section)�1 s�1], the transit time t
(hr) through the sieve tube, and the ratio of axial
to radial irreversible energy dissipation (which
Fig. 5. Steady-state long-distance transport characteristics
m. Each sieve tube has the same geometry as described in Sec
loading and unloading zones, respectively, while varying the
unloading zone concentration is set by cn). Shown are the sap v
flux density vs (solid line with circles), the mean transit time of t
to membrane irreversible energy dissipation Zz=Zr (dashed–do
density drop inversely with L; while the transit time increases
index of the strength of axial resistance relative to membrane
suggesting that even at low sieve tube lengths, membrane con
we hold as a proxy for the resistance
of the axial path relative to the resistance of
membrane walls). Sap flux density drops nearly
two orders of magnitude between the 1-m and
the 20-m sieve tube, and solute flux density does
the same. We would expect the drop in both of
these flux densities to be inversely proportional
to the increase in sieve tube length, and this is
indeed what we find, with some small deviations
for shorter tubes due to the relatively high
impact of membrane resistance to the total
resistance of the sieve tube at shorter lengths.
The sap flux density we calculate for the 1-m case
is very high, 50% higher than even the fastest
transport rates observed in the roots of Triticum

aestivum by Passioura & Ashford (1974), and
over a distance three times as long. This is
largely due to the large concentration difference
we applied.

Transit times t increase by over three orders of
magnitude with an increase in sieve tube length,
from just 7min at 1m, to 7 hr at 5m, to nearly 5
days at 20m. This increase in t is proportional to
the square of the sieve tube length, which is
sensible given that v decreases inversely with L:
That a 20m tube would require such a long
transit time, even for a large concentration
difference, begs the question of whether long
for five sieve tubes of varying lengths L ¼ 1; 2, 5, 10, and 20
tion 3.1. Concentration is set to 1250 and 500molm–3 in the
loading rate to meet this condition in the loading zone (the
elocity or flux density v (dotted line with squares), the sucrose
he system t (dashed line with triangles), and the ratio of axial
tted line with diamonds). Sap flux density and sucrose flux
roughly with the square of L: The dissipation ratio give an
resistance. In all simulations shown here, Zz=Zr is at least 4,
ductance is only marginally limiting to transport.
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tubes are capable of providing adequate
assimilate transport between leaves and distant
sink tissues. A number of different kinds
of materials are transported in the phloem. If
sucrose were the only solute, this would not
be a problem, since it is stored all along
the translocation pathway (Patrick et al., 2001),
buffering changes in the loading or unloading
rate at the ends via temporary mobilization in
the intermediate zone. Many substances,
however, are not delivered as metabolic assim-
ilates, but as molecular signals. Hormones
are transported in the phloem (Ziegler,
1975), and their physiological efficacy may be
contingent on their rapid translocation through-
out the plant. Although we cannot say anything
conclusive here about whether a 5 day transit
time is prohibitively long, we can certainly say
that transport will take far longer at greater
distances and that plants with longer axes could
be forced to lower their sieve plate resistance, or
maintain shorter sieve tubes linked in series,
or both.

Also shown in Fig. 5 is the ratio Zz=Zr of the
irreversible energy dissipation rates of axial flow
and radial membrane transport. In these simula-
tions, this ratio is always significantly greater
than unity (a minimum value of 5) indicating
that axial resistance to transport dominates the
flow regime.

3.2.2. Loading Zone Sensitivity

To test the transient, frequency-dependent
behavior of the system at different values
of L; we applied a small sinusoidal and
diurnal impulse wave function in the unloading
zone to these same steady-state simulations,
such that

bunloadðtÞ ¼ bunloadð0Þ 1� z sin
2pt

86 400 s

� �� �
; ð25Þ

where bunloadð0Þ equals minus the loading
rate at all t; t is in seconds, and the denominator
of 86 400 s sets the sine function to a
diurnal cycle, with a drop in the unloading
rate during the first half of the cycle, followed
by a rise in the second half. z is the ampli-
tude of the sine function, and is set
arbitrarily by

z ¼
pð0:01Þ

PN
i¼1 CiAiDz

ð86 400 sÞ
PNðd=LÞ

i¼1 BiDz
; ð26Þ

where the factor 0.01 in parentheses is the limit
(1%) by which the change in unloading rate is
allowed to alter the sucrose content of the model
domain over half a day’s time. The summation
in the numerator gives the total sucrose content
of the system, while that in the denominator
gives the total loading rate. Here, z varied
between 0.0003 at L ¼ 1m and 0.312 at
L ¼ 20m, roughly as a function of L2:

The impulse function in eqn (25) was applied
for 4 days, after which the variation in unloading
rate, unloading zone sucrose concentration,
loading zone sucrose concentration, and the
phase shift f between changes in cunload and
changes in cload were determined (Fig. 6). The
sensitivity of cload to changes in cunload (given as
the ratio of their coefficients of variation), drops
considerably as L increases, while the phase shift
f increases, from about 7min at L ¼ 1m, to 3 hr
at L ¼ 5m, to 16 hr at L ¼ 20m. Thus, not only
are longer sieve tubes slow at delivering their
assimilates to distant points in the plant, but
they are considerably less sensitive to changes in
supply or demand at one or the other ends of the
tube.

Of particular interest given the recently intense
work on identifying and characterizing mem-
brane transporters in the phloem sieve element/
companion cell complex (Patrick et al., 2001) is
that at very low L; total sieve tube concentration
is extremely sensitive to small differentials
between the loading and unloading rates
(Fig. 6). Even the smallest increase or decrease
in b (in this case, less than a tenth of a percent
at L ¼ 1m) can lead rapidly to either feast or
famine, a situation redolent of ‘‘the comatose
patient and the hyperactive nurse’’ of van Bel
et al. (2002), where the activity of the sieve
element depends heavily on the participation of
its companion cell.

4. Concluding Comments

The model presented here represents a sig-
nificant technical improvement over previous



Fig. 6. Non-steady-state long-distance transport characteristics for five sieve tubes of varying length L ¼ 1; 2, 5, 10, and
20m, built on the steady-state results reported in Fig. 5. Here, the unloading zone of each tube was exposed to small,
sinusoidal, diurnal fluctuations in unloading rate, while recording variation in time-dependent variation in the sucrose
concentrations of the loading and unloading zones. Left axes: the ratio of the coefficient of variation (CV, standard
deviation divided by the mean) of cload the loading zone concentration to the CV of cunload (dotted line with squares), and the
ratio of the CV of cload to the CV of the unloading rate bunload (solid line with circles). Right axis: the phase shift f (hr)
between peak values of concentration in the unloading zone to peak values in the loading zone. In shorter sieve tubes, the
loading zone concentration is very sensitive to changes in the unloading zone concentration, with very little phase shift,
whereas in longer sieve tubes this sensitivity is largely lacking. Additionally, in shorter sieve tubes, the loading zone
concentration is extremely sensitive to changes in loading and unloading rate.
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models. The inclusion of wall elasticity, an
improved formulation for sieve plate resistance,
nonlinear viscosity and solute potential rela-
tions, and an improved numerical approach
incorporating a modified Newton–Raphson
iteration method and a slope-limiting TVD
method for determining node boundary concen-
trations, make it available to test a number of
hypotheses not previously explored in a model-
ing context. The simulation can handle sharp,
fast-moving concentration fronts quite well at
all spatial resolutions and without significant
smearing (largely due to the inclusion of the
TVD method), and it produces results that are
qualitatively very similar to the results of
previously developed numerical models (Tyree
et al., 1974; Goeschl et al., 1976; Smith et al.,
1980).

The inclusion of wall elasticity has shown us
that expandability of the sieve tube walls is
probably of little biological significance in
altering sieve tube conductivity. Because the
sieve plates present most of the resistance to
axial flow, an increase in lumen radiusFthough
significantly increasing the conductance of the
lumen itselfFwill have little effect on the overall
conductivity of the sieve tube. This is counter to
the suspicions of Lee (1981) and Sovonick-
Dunford et al. (1982), who proposed that
transient changes in lumen pressure could act
to locally increase sieve tube conductance and
increase the rate of flow.

The resistance to flow provided by the sieve
plates is not trivial, even in the absence of
occluding P-proteins. Ratios of axial to mem-
brane irreversible energy dissipation strongly
suggest that in all simulations the predominant
resistance to flow is axial. Moreover, the
geometry of the sieve tube was such that
the sieve plates decreased the conductivity
of the sieve tube by as much as 85%. We
must therefore expect that in a number of cases,
sieve tubes, depending on their internal
anatomy, could be quite ineffective at transport-
ing assimilates over long distances. Evolutionary
changes in anatomy that might seem superficially
to have the potential to increase axial conduc-
tance, such as an increase in sieve tube radius,
which would have little effect in the presence of
sieve plates, or an increase in sieve plate
conductivity, which seems unlikely given the
protective role of sieve plates against herbivores,
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will not significantly improve the transport
capacity of long sieve tubes. Other changes, such
as the addition of osmotically active amine-
nitrogen and electrolytes to the sieve sap, could
increase transport rates to a point, but not
enough to overcome the strong 1=L2 propor-
tionality of transit time.

This model, like others before it, assumes
that the only solute constituent of phloem sap is
sucrose. The mathematical difficulties of includ-
ing additional solutes are not insurmountable.
However, our emphasis on sucrose is not due
to a technical limitation but a pragmatic one: if
the feasibility of OGPF can be shown
with sucrose alone, additional solutes will only
help its cause. To this day, no effort has been
made to include other solutes in this kind
of modelFthough some mention of an un-
published K+ model was made by Komor
et al. (1996). It is not entirely known how
other solutes will affect transport, though it
has long been suspected that they may play a
crucial role. Lang (1983) hypothesized that
potassium and its salts, which are far less viscous
than sucrose, could significantly enhance OGPF.
Potassium is a particularly strong candidate
for supplemental osmotic control of phloem
translocation. It is the dominant sieve
tube cation (MacRobbie, 1971; Pate, 1975;
Ziegler, 1975), it has high solute pressure at a
relatively low viscosity (Hoad & Peel, 1965;
Mengel & Haeder, 1977; Smith & Milburn,
1980a, b), and sucrose transport is limited in
plants grown in K+ limiting soil, even though
there is no reduction in photosynthesis (Hartt,
1969; Mengel & Viro, 1974). Moreover, as
noted by Lang (1983), sucrose transport
rates are often better correlated with gradients
in potassium concentration than with gradients
in sucrose (Grange & Peel, 1978). Nevertheless,
K+ is known to be present in sieve sap at
concentrations corresponding to no more
than 3/4 the solute potential of sucrose
(Lang, 1983). An increase in the driving gradient
of as much as 75%Fas such a K+ concentra-
tion would amount toFcould only increase the
flow rate by that amount. Therefore, in the
presence of potassium ions at these concentra-
tions, transit times could be reduced by no more
than 40%.
In fact, the best course for a plant faced with
long transport distances seems to be a reduction
in the length of the sieve tube, rather than any
modification to the osmotic constituents of the
sap. Instead of relying on a single osmotically
isolated path from source to sink, the plant
ought to rely on a set of such paths arranged in
series. As seen in Section 3.2.1, transit time
decreases with the inverse square of L: A halving
of the transport distance would therefore mean a
quartering of the transit time, and a quartering
of the distance would reduce the transit time to
1/16th. It is not difficult to see, then, how two
concatenated 10m sieve tubes would have a
composite transit time of only 1/2 that of a single
20m sieve tube, and four 5m sieve tubes only 1/4
that of a 20m tube. Thus the transit time of a
composite system would vary linearly with the
inverse of L; rather than with its inverse square.

The advantage of a composite or ‘‘relay’’
(Lang, 1979; Aikman, 1980; Murphy & Aikman,
1989) system in plants is the balance struck
between the stately elegance of OGPF and the
precise control and increased speed afforded by
intermediate active transport. The only disad-
vantage, aside from the cost of active loading, is
that a reduction in L also makes sieve tube
sucrose concentration considerably more sensi-
tive to sudden changes or differentials be-
tween loading and unloading rates (as seen in
Section 3.2.2). A low value of t means that
transport through the system is rapid relative to
storage. Any change in b; therefore, at either end
of the tube, could spell significant and rapid
changes in concentration that only a very
attentive companion cell could correct.

If active transport relays are present between
axially adjoined sieve tubes, then the standard
textbook depiction of phloem transport becomes
untenable. In the textbooks, a single, osmotically
isolated sieve tube is responsible for transport
along the entire length of the plant. Solutes are
brought to points in the plant where they are
needed according to the differences in rate of
consumption between those points, and no
intermediate control is strictly necessary. How-
ever, if there is intermediate active transport
between consecutive sieve tubes transport will be
markedly faster, despite the metabolic cost of
active transport and the unfortunate reduction
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in elegance. That there is intermediate
active transport is at least circumstantially
supported by the presence of sucrose and water
membrane transporters (Patrick et al., 2001)
throughout the plant. Passive loss and active
loading of sucrose are known to occur every-
where (Komor et al., 1996). Perhaps this ‘‘leak-
pump’’ behavior of phloem tissue is not simply a
matter of storage or assimilate supply to stem
tissue, but additionally directed at transporting
sucrose from one sieve tube to the next. Münch’s
vision of phloem transport would still be
generally correct: demand for assimilates would
continue as the ultimate determinant of solute
partitioning, and OGPF would continue to be
the principle means of moving solutes between
sites of active transport, but the control of speed
and direction would be proximally controlled
at intermediate membrane boundaries. ‘‘Sink-
strength’’ is then not only a misnomer (Minchin
& Thorpe, 1993), but proximally incorrect, as
well.

Unfortunately, this hypothesis is difficult to
test directly. Little is known about the fine-scale
anatomy of the phloem in different taxa; indeed,
the values of b and k used here are just hopeful
estimates. While plant physiologists and mole-
cular biologists have done much in the last 15
years to clarify the mechanisms of loading and
unloading in various plant tissues, little has been
done to marry that information to what is
known of phloem anatomy in wood and in
other stem organ tissues. The hope with this
model is that it will provide a good point
of departure for further studies of transients in
phloem transport. Future work will explore
the functional limitations of phloem structural
features (of those limited studies already
published), provide better estimates of b
across taxa and better estimates of resistance
under particular geometriesFsuch as those of
conifers whose sieve cells are uniformly perme-
ated by sieve pores, on lateral as well as
transverse walls.
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Appendix A

A Modeling History of Osmotically

Generated Pressure Flow

The first proposal of what is today known as
the OGPF hypothesis was articulated by Ernst
Münch to a meeting of the Deutsche Botanische
Gesellschaft in February, 1926, as the ‘‘Dy-
namics of Sap Flow’’ (Münch, 1926). The
proposal was followed by a more complete
treatment of the hypothesis, including both
physical and physiological experiments, which
described how a

local gradient in osmotic pressure, which
develops by assimilation [via photosynth-
esis] or conversion from metabolically
stored materials at one end of the gradient,
and by consumption or metabolic storage
of that assimilate at the otheryproduces
pressure streams in the cell sap that
automatically lead the necessary materials
to where they are needed in proportion to
their production and consumption (Münch,
1927, translation MVT).

Münch’s system was both simple and elegant,
and required only that the phloem transport
pathwayFor any osmotically isolated inter-
cellular pathwayFbe of sufficiently low resis-
tance to accommodate measured flow rates. Yet,
despite its elegance, initial support for the OGPF
hypothesis in the phloem was limited. Direct
measurements supporting the existence of the
necessary osmotic gradients were lacking, and it
was generally believed that the sieve plates were
blocked by P-proteins (Curtis, 1935; Canny &
Phillips, 1963; Thaine, 1969; Aikman & Ander-
son, 1971; Canny, 1973; Fensom, 1981), a set of
plastid-bound proteins in the cell lumen (Cron-
shaw, 1975) that upon damage expand and block
the flow of sap through the sieve plates (Esau,
1969; Crafts & Crisp, 1971; Knoblauch & van
Bel, 1998; Knoblauch et al., 2001). Normal
methods of fixation for sectioning can activate
the release of P-proteins, a fact of which if
ignorant could lead to the belief that sieve plates
are normally blocked. However, with careful
handling, it is possible to prevent the wounding
response (Evert, 1982; Ehlers et al., 2000), and
today good evidence, both structural and phy-
siological, supports the conclusion that sieve
pores are free from obstruction under normal
conditions (Knoblauch & van Bel, 1998). In
addition, a variety of empirical approaches,
including psychrometry (Kaufmann & Kramer,
1967; Sovonick-Dunford et al., 1981), radio-
active tracer kinetics (Fisher, 1970; Christy &
Fisher, 1978; Fisher et al., 1978; Ross & Tyree,
1980), negative staining (Fisher, 1978), and mass
balance (Passioura & Ashford, 1974), have
provided evidence for flow rates and osmotic
pressure gradients commensurate with some of
the predictions of the OGPF hypothesis.

A series of phloem transport models have been
published over the last 40 years. Because the
work presented here purports to improve on
these models, a brief discussion of their history is
in order, and will now follow. For a discussion
of other phloem transport hypotheses, such as
cytoplasmic streaming, electro-osmosis, particle
streaming, and surface flow, see reviews in
the edited volumes by Aronoff et al. (1975),
Zimmermann & Milburn (1975), and Wardlaw
& Passioura (1976). We give a summary of the
relevant OGPF models in Table 1.

A.1. EARLY MODELING EFFORTS

The first mathematical analysis of Münch’s
OGPF hypothesis was presented by Horwitz
(1958) in a discussion of the theoretical implica-
tions of radioactive tracer studies of transloca-
tion. Horwitz presented a complete system of
differential equations for the unloading of a
radioactive tracer along the transport pathway
of the sieve tube, and concluded that mass flow
systems such as described by the OGPF hypoth-
esis are in close agreement with the available
radio-decay data. However, as anything beyond
a test of empirical data, his equations were
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insufficient, since a complete model of the
dynamics of pressure flow would require that
the non-zero volume of sucrose itself be in-
cluded, an issue ignored until the work of
Christy & Ferrier (1973). Omitting Vs can lead
to underestimates of the velocity as high as 25%.

Horwitz also justified the use of the Hagen–
Poiseuille flow relation for the pressure gradient
along the sieve tube and through sieve plates. He
found that despite the large momentum changes
attendant in sieve tube sap around and through
the sieve plates, viscous effects are still domi-
nant, with flow linearly proportional to the
pressure drop, albeit with a slightly lower
conductance than in a sieve plate free system.
He also concluded that the changes in momen-
tum incurred by the flux of water across the
plasma membrane are sufficiently small to be
ignoredFnot surprising given that characteristic
Reynolds numbers in sieve tubes are in the range
of 10�2–10�3. These conclusions, since they are
important to the thermodynamic validity of
the OGPF hypothesis, are further discussed in
Appendix B of this paper.

Work by Eschrich et al. (1972) and Young
et al. (1973) continued the mathematical analysis
of the Münch flow system using a physical model
made of dialysis tubing. Their work was a
technical advance over the work of Horwitz
(1958) in its delivery of a more rigorous
presentation of the non-equilibrium thermody-
namics of membrane transport. However, their
formulation lacked a closed-form solution of
solute concentration (it was prescribed arbitra-
rily), a realistic set of solute potential and
viscosity curves, as well as a non-zero partial
volume for sucrose.

A.2. MECHANISTICALLY COMPLETE MODELS

Mathematical analysis of the pressure-flow
hypothesis made a qualitative leap forward with
the models of Christy, Ferrier, and Tyree
(Christy & Ferrier, 1973; Tyree et al., 1974;
Ferrier & Christy, 1975; Ferrier et al., 1975;
Ferrier, 1978). The system of equations they
used was complete and allowed for closed-form
solutions of solute concentration throughout the
sieve tube, and was the first to account for the
volumetric contribution of sucrose. Of these
models, that of Ferrier et al. (1975) was the first
to include concentration-dependent changes in
viscosity and time-dependent changes in sucrose
concentration as a function of loading rate and
the apoplastic water potentialFthat is, it was
the first non-steady-state model. Given the
limited computing power available at the time,
they employed numerical techniques that could
be considered crude by today’s standards.
Especially problematic is their use of the up-
stream node’s concentration to set the concen-
tration of the node boundaries for internode
flow, an approximation that can lead to sig-
nificant solute smearing and an overestimate of
the flux density of sucrose transport at a given
loading rate, a problem which we fix with the
slope-limiting total variation diminishing
method. Nevertheless, their steady-state work
confirmed the theoretical feasibility of long-
distance transport (450m)Falthough it would
be restricted to drastically reduced rates of
flowFbut warned of the danger of expecting
long transport pathways to operate near steady
state. As have many modelers since, Ferrier et al.
(1975) employed a linear relationship between
solute potential and sucrose concentration,
dramatically underestimating solute potential at
high concentrations (e.g. by 25% at 900mol
sucrosem�3 and 201C), even though more
accurate empirical relations for solute potential
had been available for some time (Michel, 1972).
Indeed, all models developed thus far (except the
one presented in this work) have used the simple
�RTc van’t Hoff relation, valid only for small
solute concentrations (Table 1).

Lang (1978) presented a steady-state model
that tested the relative contributions of radial
vs. axial flow resistance to the dynamics of the
system. His system of equations was complete
(though it lacked a sucrose volumetric term) and
included an explicitly stated function of the
dependence of dynamic viscosity on sucrose
concentration. Lang (1978) also explored the
importance of the relative osmotic strength of
various carbohydrates with respect to their
viscosity to determine the ‘‘ideal’’ solute con-
centrations for each.

Goeschl et al. (1976) and Magnuson
et al. (1979) pointed out in response to
earlier work by Christy & Ferrier (1973) that
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to obtain a closed-form solution of solute
transport in the phloem it was necessary to
provide explicit, concentration-dependent func-
tions of phloem unloading. Unless the solute flux
density along the length of the sieve tube were
prescribedFas done by Lang (1978), who used
a flow boundary condition at one end of the
tubeFthe concentration profile at steady state
would not be unique. In response to the
non-uniqueness problem, Goeschl et al. (1976)
suggested a number of different functional
forms for sucrose unloading, ranging from
linear functions to Michaelis–Menten saturable
kinetics.

Smith et al. (1980) introduced time-dependent
properties to the model of Goeschl et al. (1976),
developing a non-steady-state model of phloem
transport, the first since that of Ferrier et al.
(1975). Using a Newton–Raphson time-stepping
method, Smith et al. (1980) dramatically im-
proved non-steady-state phloem modeling over
that of Ferrier et al. (1975) and Ferrier (1978).
The steady-state results of their non-steady-state
model agreed well with the steady-state results of
Goeschl et al. (1976), on whose equations their
model was based. Moreover, the steady-state
results of Smith et al. (1980) were qualitatively
identical to those of Christy & Ferrier (1973) and
Tyree et al. (1974). Unfortunately, given the
limited computing power available at the time,
the spatial and temporal resolution of their non-
steady-state approximation was low, making
a thorough analysis of long-distance transport
difficult.

A.3. LATER REFINEMENTS

A number of refinements to models of long-
distance phloem transport have been made since
the early 1980s. The theoretical implications of
solution transport through the plasmodesmata
connecting the sieve elements with their neigh-
boring companion cells were first addressed in
the late 1980s (Murphy, 1989a–d). By incorpor-
ating what was known of phloem plasmodesma-
tal transport, Murphy determined that the rate
of sucrose unloading in trees across the sieve
tube plasma membrane could be no more than
50 nmol (m2 membrane area)�1 s�1, while over
short distances the unloading rate could be as
high as 100 nmol (m2 membrane area)�1 s�1. (It
should be noted that in this work rates of
loading and unloading are typically at least one
order of magnitude higher than this.) He also
showed that the pressure flow of solution
between the sieve elements and companion cells
must be accounted for when calculating sieve
tube pressure gradients from measurements, and
that apoplastic loading of sucrose is more likely
than loading via plasmodesmata. His approach
was analytical and steady state, with the major
contribution being a subtler grasp of the
relationship of transport theory to measurement
given the complexity of the plasmodesmata,
rather than an advancement of the modeling of
long-distance phloem transport. Plasmodesmatal
kinetics in the loading and unloading of sucrose
in the phloem is not germane to the essential
biophysical questions of long-distance transport
asked in this work. It is taken for granted here
that sucrose is loaded and unloaded in some
unspecified fashion, and that for our purposes
arbitrarily prescribed functions describing those
processes are sufficient.

Phillips & Dungan (1993) presented an analy-
tical approach to steady-state phloem transport.
Their solution was robust, but lacked the power
that an equivalent numerical model would
possess, and few of their claims that their work
is mathematically more rigorous than previous
efforts can be substantiated in their results. The
conclusions that Phillips & Dungan (1993) make
using a sophisticated solution of the Navier–
Stokes equation (being a more general case of
the Hagen–Poiseuille relation) are identical to
those of the models they cite as incorrectly
incorporating Hagen–Poiseuille flow: that as
pressure drops in the sieve tube with distance,
inward radial membrane flow will increase in
magnitude, causing a further increase in velocity,
an additional pressure drop, and dilution. As
many theoretical studies (Eschrich et al., 1972)
have reported, a change in pressure gradient due
to sucrose dilution and flow divergence is to be
expected. Moreover, Phillips & Dungan (1993)
incorrectly state their case when they say that
other models globally apply the Hagen–
Poiseuille flow relation to the entire sieve tube.
In fact, these other models apply the Hagen–
Poiseuille flow relation locally, and explicitly
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include wall flow, producing the same sap
acceleration that Phillips & Dungan (1993) claim
can be achieved in no other way but through the
use of the Navier–Stokes equation.

To our knowledge, no analytically complete
model of the long-distance component of
phloem transport has been published since
1993. A number of models have been developed
to, explain sink priority in whole-plant translo-
cation (see Minchin et al., 1993, for example and
references) or to derive translocation coefficients
for use in crop models (Sheehy et al., 1995), but
these make simplifying assumptions that can
eliminate their usefulness in detailed analyses of
translocation, and it is not clear that we know
enough about what kinds of resistances are
attendant in the sieve tubes of tall or short plants
to make meaningful, yet general, predictions for
agricultural systems. In addition, although two
nominally non-steady-state models have been
developed (i.e. by Ferrier et al., 1975; Smith et al.,
1980), neither of these models is available,
neither includes the effects of the non-linear
relationship of concentration on solute potential,
and neither includes the elastic properties of
phloem tissue. These deficiencies are addressed
in this work.

Appendix B

Applicability of the Hagen–Poiseuille Flow

Relation to Sieve Elements and Sieve Pores

Axial transport in this model was calculated
assuming that flow rate was linearly propor-
tional to the axial pressure gradient according to
the Hagen–Poiseuille relation. For this assump-
tion to be justified, a number of conditions must
be met, namely that inertial transfer due to
membrane transport and gravity have no sig-
nificant effect on the pressure gradient, that a
parabolic velocity profile is fully developed
throughout each sieve element, and that the
radial distribution of solute in the sieve tube is
homogeneous (the justification for this will be
given in the next section). Some confusion has
arisen over the applicability of the Hagen–
Poiseuille relation, as discussed in the previous
section. Phillips & Dungan (1993) argue that the
relation is not applicable to cases of flow in a
porous tube, citing Christy & Ferrier(1973),
Tyree et al. (1974) and Goeschl & Magnuson
(1986) as cases where it has been incorrectly
applied. However, while it is true that Hagen–
Poiseuille flow does not on its own account for
the changes in axial pressure gradient observed
in the sieve tube in modeling studies, it does
account, to a very good approximation, for the
local conductivity of the sieve tube, as long as
radial transport is explicitly included. The
following section will justify the use of Hagen–
Poiseuille flow as a very good approximation of
local axial conductivity.

Phloem transport is characterized by low
Reynolds numbers ðRe51Þ; and is there-
fore dominated by viscous effects. This can
be shown directly by calculating the relative
contribution to the pressure gradient of viscous
forces on the one hand and the transfer of
momentum via radial membrane flux on the
other. These two components are, following
Horwitz (1958):

dp

dz
¼ �

av

k
� 2rv

dv

dz
; ðB:1Þ

where the second term on the right-hand
side is the inertial contribution. Using data
for the steady state from Fig. 3, where v is
approximately 2.4� 10�4m s�1, k is 1.4�
10�13m4 s�1MPa�1, r is 1.1� 103 kgm�3, and
the maximum value of dv=dz is 7.8� 10�4 s�1,
the viscous contribution �0.35MPam�1) is at
least 800 times greater than the inertial con-
tribution (�4.1� 10�4MPam�1). Thus, not
only can the inertial components of the Navier–
Stokes equation be neglected, but relative to
viscous forces, radial flow will transfer very little
momentumFand very little volumeFto the
sieve tube sap.

For Hagen–Poiseuille flow to be applicable, it
must also be the case that the radial parabolic
velocity profile be fully developed throughout
the sieve element. Only near the sieve plate
boundary is this assumption in danger, where
the change in geometrical configuration as the
sap flows through the sieve plate homogenizes
the radial distribution of axial velocities. How-
ever, at these values of Re ð51Þ; we can expect
Hagen–Poiseuille flow to become fully developed
within less than 10% of the radius of the tube, or
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within less than 0.3% of the total length of the
sieve element (Wilcox, 1997, p. 214). Should this
error seem too great, consider that any errors
introduced by unjustifiably assuming fully devel-
oped flow will be swamped by the far greater
resistance imposed by the sieve plates.

The gravitational component of transport can
also be ignored, not because it is negligibly
smallFthough it is smallFbut because of the
phloem’s close anatomical association with
the xylem, the sap of which is subject to the
same gravitational forces. Insofar as the densities
of the two saps are the same (phloem sap density
is only about 10% greater than that of
the xylem), and assuming that the water
transport between the xylem and phloem is
sufficiently rapid (that is, that water potential in
the sieve tube lumen is approximately that
of the apoplast, and that the water potential of
the apoplast is the same as in the adjacent xylem
vessels), then the standing pressure gradient
in the xylem will cancel the standing gradient
in the phloem (Milburn, 1975). This is fortunate,
since seldom is every part of a tree oriented
strictly vertically. If we were required to account
for the change in gravitational potential, we
would also have to account for branch orienta-
tion. In any event, typical pressure gradients in
the phloem (B0.4MPa m�1 in Fig. 3) are much
greater than the 0.01MPam�1 standing gradient
imposed by gravity.

In previous work (Tyree et al., 1974; Goeschl
et al., 1976), the hydraulic conductivity of
the sieve plates was calculated as though it
were a set of parallel pipes, connecting one
sieve element to the next. Flow through each
of the pores was assumed to be
Hagen–Poiseuille, and since the pressure differ-
ence across the sieve plate was assumed to be
constant for all pores, the flow rate was the
same through each. While providing a good
approximation, the ‘‘parallel-pipe’’ model is
insufficient in cases where the pores are very
short, when the resistance imposed by the
reduction (and subsequent increase) in the aspect
ratio of the flow path as the fluid passes through
the sieve plate becomes significant. Previous
authors, who assumed strict adherence to Ha-
gen–Poiseuille flow (Tyree et al., 1974; Goeschl
et al., 1976), calculated the pressure drop across
a pore Dppore as

Dppore ¼ �
8mlp

pr4p
jp; ðB:2Þ

where Dppore is everywhere the same across a
single plate, and jp is the mass flow of phloem
solution through a single sieve pore. However,
by inspection, eqn (B.2) seems to indicate that
the pressure drop across the sieve plate drops to
zero as the pore length became infinitesimally
small. A solution to this problem is presented by
Dagan et al. (1982), who found that the pressure
drop due to Hagen–Poiseuille flow through a
finite-length pore can be given by the standard
formulation given in eqn (B.2), plus an addi-
tional pressure drop given by Sampson (1891;
cited by Dagan et al., 1982) for pores set in
infinitesimally thin, infinite-extent planes. The
Sampson pressure drop across an infinitesimally
thin sieve pore Dppore; Sampson is (Dagan et al.,
1982):

Dppore; Sampson ¼ �
3m
r3p

jp; ðB:3Þ

which does not drop to zero at zero pore length.
The total pressure drop across the pore Dpn

pore is
then

Dpn

pore ¼ �
8lp þ 3prp

8lp

� �
8mlp

pr4p

 !
jp; ðB:4Þ

where j (dimensionless) is the Sampson factor
and is equal to the inverse of the quantity in
brackets:

j ¼
8lp

8lp þ 3prp

; ðB:5Þ

such that

Dpn

pore ¼ �
1

j
8mlp

pr4p

 !
jp: ðB:6Þ

Here, in the limiting case that lp approaches
zero, j will approach zero, and eqn (B.6) will
reduce to (B.3).

Equation (B.6) can be rewritten for flow, j;
across the entire sieve plate:

Dpn

pore ¼ �
1

jNp

8mlp

pr4p

 !
j; ðB:7Þ
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where Np is the number of pores contained in a
single sieve plate. The axial pressure drop along
a single sieve tube lumen is given by

Dplumen ¼ �
8mðl � lpÞ

pr4
j; ðB:8Þ

where the quantity ðl � lpÞ is the distance
between consecutive sieve plates. Under mass
conservation, j for the sieve plate should equal j
for the sieve tube lumen, such that the total
pressure drop across a single lumen and one
adjacent sieve plate is given by

DpT ¼ �
8m
p

lp

jNpr4p
þ

ðl � lpÞ
r4

" #
j: ðB:9Þ

From this, given that

j ¼ �k
DpT

l
; ðB:10Þ

where k is the combined conductivity of the
lumen plus sieve plate, we arrive at a formula for
k that takes into account the Hagen–Poiseuille
pressure drop of both the lumen and sieve pores,
plus the pressure drop due to the Sampson
result:

k ¼
jNpr4pl

jNpr4p l � lp
� �

þ r4lp

" #
pr4

8m
ðB:11Þ

Setting the quantity in brackets equal to b; sieve
tube conductivity is given by

k ¼ b
pr4

8m
; ðB:12Þ

where

b ¼
ajr2pl

ajr2pðl � lpÞ þ r2lp
; ðB:13Þ

and a is the fraction of the sieve plate area
composed of sieve pore area, such that

a ¼ Np

pr2p

pr2
¼ Np

r2p

r2
: ðB:14Þ

Note that we assume the radius of the sieve
pores to remain constant during sieve element
expansion.
Under the sieve tube geometry employed here
(r ¼ 7:5 mm, l ¼ 250mm, lp ¼ 0:5 mm, rp ¼ 0:23
mm, and a¼ 0.5) b is approximately 0.132. When
the sieve pores are long relative to their diameter
(i.e., when lpbrp), the Sampson factor ap-
proaches unity and eqn (B.13) approaches the
standard solution as used by other authors.
As pore length decreases, however, the Sampson
factor becomes important (i.e. it approaches
zero), where the limit of b as lp approaches
zero is

lim
lp-0

b ¼
8ar2rpl

8ar2rpl þ 3pr4
: ðB:15Þ

The introduction of the Sampson factor ensures
that even if the pores are very short (i.e., lp5rp),
there is always some, and in this case quite
considerable, resistance to flow.

The Sampson resistance term assumes that
the zero-length pore it treats is embedded in
zero-thickness plane of infinite extent. Here, of
course, we are dealing with pores that are
considerably more densely packed. However,
to a first-order approximation, its inclusion
is acceptable (Howard A. Stone, Division of
Engineering and Applied Sciences, Harvard
University, pers. comm.), and clearly an im-
provement over previous sieve plate impedance
formulations.

Appendix C

Molecular Diffusion and the Axial and

Radial Transport of Solutes

The current construction of the solute con-
servation eqn (13) assumes that axial diffusion
and dispersion are negligible relative to axial
convection, and that radial diffusion is suffi-
ciently fast to ensure the solute’s radial homo-
geneity. If the former were not the case, then
terms for axial diffusion would have to be
included, arguably increasing the complexity of
the solution. If the latter were not the case, and a
significant radial profile in sucrose could be
expected, then there would be a non-uniform
distribution of viscosity, and the Hagen–
Poiseuille relation would not strictly hold
(though it could represent a good first-order
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approximation). Radially heterogeneous solute
concentrations would also invalidate eqn (8),
which relies on the assumption that the
mean radial concentration of sucrose is the
same as the concentration at the wall
boundary.

Had we included axial diffusion, axial
solute flow would have taken the following
form:

js ¼ cj � aDm
@c

@z
: ðC:1Þ

where Dm is the solute’s diffusion coefficient in
water (approximately 5� 10�10m2 s�1 for su-
crose at physiological concentrations), and a is
the cross-sectional area of the tube. Using data
from Fig. 3 for all z and t; we find that the
diffusion term is at all times at least five orders of
magnitude smaller than the convective term.
Hence, diffusive solute flux is negligible relative
to convective flux, and the second term on the
right of eqn (C.1) drops out to give eqn (4).

While axial diffusion is slow relative to
convection, it turns out that it is sufficiently fast
to ensure a radially homogeneous distribution of
solute. Following Taylor (1954), if

r2v

4DmL
51; ðC:2Þ

where L is the length over which solute
concentrations undergo a significant change,
and is defined such that 1=L

� �
equals the mean

value of ð1=cÞð@c=@zÞ over the experimental (or
model) domain, then the time-scale of radial
diffusion is far less than the time required for the
solution to move axially into a region where the
concentration changes appreciably. From Fig. 3
at t ¼ 24 hr, we find an appropriate value of L to
be B6m, and using that value, and the very
highest transport velocities v mentioned in the
phloem literature (B300 cmhr�1, Passioura &
Ashford, 1974), the condition in eqn (C.2) is
satisfied by more than six orders of magnitude.
Rapid radial diffusion indicates the possibility of
strong Taylor dispersion, but we find that the
dispersion coefficient is of the same order as
diffusionFi.e. rv=DmE10 (Taylor, 1954)Fand
as axial diffusion is negligible, we can similarly
discount axial dispersion.
Appendix D

Modified Newton–Raphson Method

The time-stepping method used in this work is
called the ‘‘modified Newton–Raphson’’ techni-
que (Istok, 1989; called ‘‘modified-Picard’’ by
Celia et al., 1990), which uses past estimates of
the solution to solve not for new estimates, but
for corrections or increments to those estimates.
The correction to some state factor X is added to
the initial estimate of X in the following way:

X mþ1 ¼ X m þ dX m; ðD:1Þ

where dX m is the correction to X between
iteration m and iteration m þ 1:

The change in the state of the system between
time steps n and n þ 1 is given by

DX nþ1 ¼ X nþ1 � X n; ðD:2Þ

where DX nþ1 is the backwards-difference (or
fully implicit) time step increment. This can be
rewritten to account for the iteration number
m as

DX nþ1; mþ1 ¼ X nþ1; mþ1 � X n; ðD:3Þ

where the change in X between the current time
step and the last is defined at the ðnþ1Þst time
step and ðmþ1Þst iteration, and this can be
expanded to read:

DX nþ1; mþ1 ¼ðX nþ1; mþ1 � X nþ1; mÞ

þ X nþ1; m � X n; ðD:4Þ

where the quantity in the parentheses is the
difference in state across an iteration. Equation
(D.4) is the fully expanded modified Newton–
Raphson iteration equation. The change in state
between iterations, or, otherwise stated,
the correction to the previous estimate of the
change in state between time steps, can now be
rewritten as

dX m ¼ X nþ1; mþ1 � X nþ1; m; ðD:5Þ

where upon insertion into eqn (D.4) and some
rearrangement we find:

X nþ1; mþ1 ¼ X nþ1; m þ dX m: ðD:6Þ
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During every time step, X nþ1;mþ1 in eqn (D.6) is
decomposed for each iteration into what is
known ðX nþ1; mÞ and what is unknown ðdX mÞ:
This method dramatically improves the stability
of the numerical simulation. Note that discre-
tized variables are written with capital letters.

D.1. DISCRETIZATION OF TIME DERIVATIVES

The following sections show the discretization
of each of the derivatives in eqns (16) and (17).
Following Celia et al. (1990), using a truncated
Taylor series expansion, the time derivative for
volume conservation is given by

@

@t
ðAnþ1;mþ1

i ÞE
Anþ1;m

i � An
i

Dt
þ

Anþ1;m
i

eDt
dPm

i ; ðD:7Þ

whereas the time derivative for sucrose conser-
vation is given by

@

@t
½Cnþ1; mþ1

i Anþ1; mþ1
i 


E
Cnþ1; m

i Anþ1; mþ1
i � Cn

i An
i

Dt

þ
Anþ1; mþ1

i

Dt
dCm

i : ðD:8Þ

D.2. PASSIVE WATER FLUX ACROSS

PLASMA MEMBRANE

The equation for passive membrane water flux
is given by

W nþ1; mþ1
i ¼Dnþ1; m

i ½Co
i � ðPnþ1; m

i þCnþ1; m
p;i Þ

� ðdPm
i þ dCm

p;iÞ
; ðD:9Þ

where

Dnþ1; m
i ¼ 2pRnþ1; m

i Lp; ðD:10Þ

and dPm
i and dCm

p;i are both unknowns. Note
that dCm

p;i can be written in terms of dCm
i if we let

dCm
p;i ¼

dcp

dc

				
nþ1; m

i

dCm
i ¼ Gnþ1; m

i dCm
i : ðD:11Þ

For now, we let

Qnþ1; m
i EdCm

i ; ðD:12Þ
where Qnþ1; m
i is an estimate of the change in

solute concentration, but actually a function of
dPm

i ; the derivation of which will be described
later. Equation (D.9) is now written in terms of
dPm

i :

W nþ1; mþ1
i ¼Dnþ1; m

i ½Co
i � Pnþ1; m

i �Cnþ1; m
p;i

� Gnþ1; m
i Qnþ1; m

i 


� Dnþ1; m
i dPm

i ; ðD:13Þ

where Gnþ1; m
i is solely a function of sucrose

concentration and temperature, and is given by

G ¼
dcp

dc
¼ �

RTð0:998þ 0:178 mÞ

ð1� VscÞ
2

: ðD:14Þ

D.3. AXIAL FLOW OF SIEVE TUBE SAP

The divergence in flow in the volume con-
servation equation is given by

@

@z
ðJnþ1;mþ1

i ÞESnþ1;m
i þ

dJm
i;þ � dJm

i;�

Dz
; ðD:15Þ

where

Snþ1; m
i ¼

Jnþ1; m
i;þ � Jnþ1; m

i;�

Dz
; ðD:16Þ

and Ji;þ (m3 s�1) is the flux between the i-th node
and the ðiþ1Þ-th node, defined positive in the
positive-z direction, and Ji;� is the flux between
the ði � 1Þ-th and ith node, again defined positive
in the positive-z direction. Jnþ1; m

i;þ and Jnþ1; m
i;� are

given by:

Jnþ1; m
i;þ ¼ �knþ1; m

i;þ
Pnþ1; m

iþ1 � Pnþ1; m
i

Dz
;

Jnþ1; m
i;� ¼ �knþ1; m

i;�
Pnþ1; m

i � Pnþ1; m
i�1

Dz
:

ðD:17Þ

Subsuming Dz into k; we get

Jnþ1; m
i;þ ¼ �Knþ1; m

i;þ ðPnþ1; m
iþ1 � Pnþ1; m

i Þ;

Jnþ1; m
i;� ¼ �Knþ1; m

i;� ðPnþ1; m
i � Pnþ1; m

i�1 Þ; ðD:18Þ

where is K (m3 s�1MPa�1) is the conductance of
the sieve tube section, rather than the conductiv-

ity k: K is calculated for each node separately
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using a discrete version of our sieve-plate-
modified Hagen–Poiseuille relation

Knþ1; m
i ¼ b

pðRnþ1; m
i Þ4

8mnþ1; m
i Dz

: ðD:19Þ

Knþ1; m
i;þ and Knþ1; m

i;� are given by the harmonic
means of the K’s of the bounding nodes.
Following eqn (D.18) for dJm; we can write a
simplified version of eqn (D.15):

@

@z
ðJnþ1; mþ1

i ÞESnþ1; m
i þ Hnþ1; m

i dPm
i

� Hnþ1; m
i;þ dPm

iþ1 � Hnþ1; m
i;� dPm

i�1; ðD:20Þ

where H is given by

Hnþ1; m
i;þ ¼

Knþ1; m
i;þ

Dz
;

Hnþ1; m
i;� ¼

Knþ1; m
i;�

Dz
;

Hnþ1; m
i ¼ Hnþ1; m

i;þ þ Hnþ1; m
i;� : ðD:21Þ

The divergence in solute flow in the sucrose
conservation equation must be dealt with slightly
differently. It is given by

@

@z
ðCnþ1; mþ1

i Jnþ1; mþ1
i Þ

E
Cnþ1; mþ1

i;þ Jnþ1; mþ1
i;þ � Cnþ1; mþ1

i;� Jnþ1; mþ1
i;�

Dz
;

ðD:22Þ

where Cnþ1;mþ1
i;þ is the effective sucrose

concentration for flow from node i to node i þ
1; and Cnþ1;mþ1

i;� from node i � 1 to node i:
Simulations of solute convection can be
very sensitive to the way the intermediate solute
concentrations are calculated. If those values
are set too low heading into a ‘‘shock zone’’,
where for instance axial solute flow is rapid
into a region where there is little solute,
large spatial oscillations can develop. If
they are set too high, the concentration front
is smeared. The method of characteristics,
which casts the convection term in a Lagrangian
reference frame, has been proposed to deal
with some of these difficulties (Ewing &
Wang, 2001), but we have chosen to use a
slope-limiting total variation diminishing (TVD)
method, which is more appropriate under the
Eulerian scheme employed here (Goodman &
LeVeque, 1988), and simpler to implement.
Under this scheme, the concentration profile is
broken up into a series of piecewise linear
segments with mean value equal to the concen-
tration at that node and slope determined by the
following:

’Ci ¼
@

@z
ðCiÞ ¼ minmod

Ciþ1 � Ci

Dz
;
Ci � Ci�1

Dz

� �
;

ðD:23Þ

where minmodða; bÞ ¼ 1=2ðsgnðaÞ þ sgnðbÞÞ min
ðjaj; jbjÞ: Once these slopes are calculated, the
direction of flow is determined, and the concen-
tration at the node boundary is calculated as a
logical linear combination of the slopes from eqn
(D.23), such that

Ci;þ ¼fJi;þ40g Ciþ1 þ
2

Dz
’Ciþ1

� �

þ fJi;þo0g Ci �
2

Dz
’Ci

� �

Ci;� ¼fJi;�40g Ci þ
2

Dz
’Ci

� �

þ fJi;�o0g Ci�1 �
2

Dz
’Ci�1

� �
; ðD:24Þ

where the expressions in curly brackets are
evaluated as 1 if true and 0 if false for each
node i: These definitions ensure that solute is
properly distributed in ‘‘shock zones’’. Spatial
oscillations are eliminated, but some solute
smearing is observed at low spatial and temporal
resolutions. This is the first numerical model of
solute advection in the phloem to use such a
scheme.

The complicated nature of these definitions
precludes extracting a dCm

i term from eqn (D.24)
as in eqn (D.6). However, it is apparently
sufficient to ignore that problem and rewrite
eqn (D.22) as

@

@z
ðCnþ1; mþ1

i Jnþ1; mþ1
i Þ

E
Cnþ1; m

i;þ Jnþ1; mþ1
i;þ � Cnþ1; m

i;� Jnþ1; mþ1
i;�

Dz
;

ðD:25Þ

where Cnþ1;m
i;þ and Cnþ1;m

i;� are defined according
to eqn (D.24) using flow rates estimated for the
ðn þ 1;mÞ-th iteration.
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D.4. CONSTRUCTION OF DISCRETE VOLUME

CONSERVATION EQUATION

We can now construct a complete, discretely
defined version of the volume conservation
equation:

Anþ1; m
i � An

i

Dt
þ

Anþ1; m
i

eDt
dPm

i

¼ Dnþ1; m
i ½Co

i � Pnþ1; m
i �Cnþ1; m

p;i

� Gnþ1; m
i Qnþ1; m

i 
 � Dnþ1; m
i dPm

i þ VsB
nþ1; mþ1
i

� Snþ1; m
i � Hnþ1; m

i dPm
i

þ Hnþ1; m
i;þ dPm

iþ1 þ Hnþ1; m
i;� dPm

i�1; ðD:26Þ

noting that Qnþ1; m
i has yet to be derived and

depends on P: From this we obtain

Anþ1; m
i

eDt
þ Dnþ1; m

i þ Hnþ1; m
i

" #
dPm

i

þ ½�Hnþ1; m
i;þ 
dPm

iþ1 þ ½�Hnþ1; m
i;� 
dPm

i�1

¼ �
Anþ1; m

i � An
i

Dt

" #

þ Dnþ1; m
i ½Co

i � Pnþ1; m
i �Cnþ1; m

p;i

� Gnþ1; m
i Qnþ1; m

i 
 þ VsB
nþ1; mþ1
i � Snþ1; m

i ;

ðD:27Þ

which is solved for dPm
i : Pressure, flow and

cross-sectional area estimates are revised, and
then used to solve for the concentration correc-
tion, dCm

i ; as shown below.

D.5. CONSTRUCTION OF DISCRETE SUCROSE

CONSERVATION EQUATION

The discrete version of the sucrose conserva-
tion equation follows on that of the volume
conservation equation:

Cnþ1; m
i Anþ1; mþ1

i �Cn
i An

i

Dt
þ

Anþ1; mþ1
i

Dt
dCm

i

¼ Bnþ1; mþ1
i

�
Cnþ1; m

i;þ Jnþ1; mþ1
i;þ � Cnþ1; m

i;� Jnþ1; mþ1
i;�

Dz
;

ðD:28Þ
from which we obtain

dCm
i ¼

Dt

Anþ1; mþ1
i

Bnþ1; mþ1
i

�
Cnþ1; m

i Anþ1; mþ1
i � Cn

i An
i

Anþ1; mþ1
i

� Dt
Cnþ1; m

i;þ Jnþ1; mþ1
i;þ � Cnþ1; m

i;� Jnþ1; mþ1
i;�

Anþ1; mþ1
i Dz

:

ðD:29Þ

dCm
i is used to revise estimates of concentration,

viscosity and solute potential for use in the next
iteration.

D.6. ESTIMATE OF Q FOR VOLUME CONSERVATION

EQUATION

Qnþ1; m
i could be left out of eqn (D.27) (i.e. set

equal to zero), but its inclusion dramatically
increases the stability of the model at low spatial
and temporal resolution. In essence, Qnþ1; m

i

provides a highly accurate estimate of dCm
i

without actually solving the solute conservation
equation. To solve for Qnþ1; m

i ; we must discretize
the sucrose flow divergence term in terms of P
rather than C; so that C is in terms of iteration
ðn þ 1;mÞ rather than iteration ðn þ 1;m þ 1Þ;
and dJm

i is in terms of dPm
i :

@

@z
ðCnþ1; m

i Jnþ1; mþ1
i Þ

E
Cnþ1; m

i;þ Jnþ1; m
i;þ � Cnþ1; m

i;� Jnþ1; m
i;�

Dz

þ ½Cnþ1; m
i;þ Hnþ1; m

i;þ þ Cnþ1; m
i;� Hnþ1; m

i;� 
dPm
i

�½Cnþ1; m
i;þ Hnþ1; m

i;þ 
dPm
iþ1 �½C

nþ1; m
i;� Hnþ1; m

i;� 
dPm
i�1;

ðD:30Þ

where H is defined according to eqn (D.21).
The time derivative is written in terms

of dCm
i ; following eqn (D.8), and is denoted as

Qnþ1;m
i :

@

@t
½Cnþ1;mþ1

i Anþ1;m
i 


E
Cnþ1;m

i Anþ1;m
i � Cn

i An
i

Dt
þ

Anþ1;m
i

Dt
Qnþ1;m

i :
ðD:31Þ
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Now, rewriting the solute conservation equation
using eqns (D.30) and (D.31), we can solve
for Qnþ1;m

i :

Qnþ1;m
i ¼Unþ1;m

i � Fnþ1;m
i dPm

i

þ Fnþ1;m
i;þ dPm

iþ1 þ Fnþ1;m
i;� dPm

i�1; ðD:32Þ

where

Fnþ1;m
i;þ ¼

Dt

Anþ1;m
i

½Cnþ1;m
i;þ Hnþ1;m

i;þ 
;

Fnþ1;m
i;� ¼

Dt

Anþ1;m
i

½Cnþ1;m
i;� Hnþ1;m

i;� 
;

Fnþ1;m
i ¼ Fnþ1;m

i;þ þ Fnþ1;m
i;� ;

Unþ1;m
i ¼

Dt

Anþ1;m
i

Bnþ1;m
i ;

�
Cnþ1;m

i Anþ1;m
i � Cn

i An
i

Anþ1;m
i

" #

�
Dt

Anþ1;m
i

Cnþ1;m
i;þ Jnþ1;m

i;þ � Cnþ1;m
i;� Jnþ1;m

i;�

Dz

" #
;

ðD:33Þ

to obtain from eqn (D.27):

Anþ1;m
i

eDt
þDnþ1;m

i �Dnþ1;m
i Gnþ1;m

i Fnþ1;m
i þHnþ1;m

i

" #
dPm

i

þ ½Dnþ1;m
i Gnþ1;m

i Fnþ1;m
i;þ � Hnþ1;m

i;þ 
dPm
iþ1

þ ½Dnþ1;m
i Gnþ1;m

i Fnþ1;m
i;� � Hnþ1;m

i;� 
dPm
i�1

¼ �
Anþ1;m

i � An
i

Dt

" #
þ Dnþ1;m

i

½Co
i � Pnþ1;m

i �Cnþ1;m
p;i � Gnþ1;m

i Unþ1;m
i 


þ VsB
nþ1;m
i � Snþ1;m

i : ðD:34Þ

This is the version of the volume conservation
equation used to calculate dPm

i :

Appendix E

Mass Balance and Convergence

At the end of every iteration, the
model domain is checked for global mass
balance (i.e. the gross flux of material into the
model domain must equal the change in the
quantity of material in the domain plus the gross
flux out to within a certain error tolerance). If
mass balance is satisfied, then the model
terminates the time step with that iteration and
continues to the next time step. Here, mass
balance errors are as small as the floating point
precision of the processor, but an arbitrary error
tolerance of 10�8 was set to save time.

The degree of convergence on steady state
can be found far in advance of its actually
occurring given the fact that the system
approaches steady state in a logarithmic manner.
At each time step, the pressure and sucrose
concentration states of the system are given as

yPV ¼
XN

i

Pnþ1;m
i Vnþ1;m

i ;

yCV ¼
XN

i

Cnþ1;m
i Vnþ1;m

i ; ðE:1Þ

where yPV is the total pressure-volume energy
(MPam3¼MJ) of the model domain, and yCV is
the total sucrose content (mol). The steady-state
convergence w (dimensionless) with respect to
either pressure–volume or sucrose content is
then given by

w ¼
�’y2

y .y� ’y2
; ðE:2Þ

where ’y is the first derivative of y with time (for
either pressure or concentration), and .y is the
second derivative. A value of 10�4 for w indicates
that the model has converged to within 1/100 of
a percent of steady state.

The time rate of change in y is log-linear:

lnð’yÞ ¼ st þ g; ðE:3Þ

where s is slope of the line (when so0) and g
is its y-intercept. Taking the exponents of both
sides, we find

’y ¼ estþg; ðE:4Þ

whereas the derivative of both sides of eqn (E.3)
is given by

.y
’y
¼ s: ðE:5Þ



(A)

(B)

(C)

(D)

Fig. E1. The conservation and convergence character-
istics of a 10 day simulation of an idealized sieve tube of
length L ¼ 5m performed at a relatively low spatial
resolution f ¼ 20 nodesm-1, and a time step length of
Dt¼ 10 s, as described in Appendix E. All other parameters
are as in the legend to Fig. 3. (A) A semilog plot of the
conservation of volume and sucrose. Sucrose conservation
is always excellent (due to the linearity of the sucrose
conservation equation), while volume conservation be-
comes the limiting factor in determining the number of
iterations necessary for convergence during each time step.
Here, we require that both volume and sucrose conserva-
tion be maintained to within 10�8. (B) The number of
iterations required to meet the 10�8 conservation criterion
during each time step. As the simulation approaches steady
state, a decreasing number of iterations are required to
meet this criterion. (C) The rate of change in the pressure
and concentration states of the system with time. This
function must be log-linearFand it isFin order to use the
convergence estimate described in eqn (E.9). (D) Conver-
gence on steady state, given by the dimensionless quantity
w; represents the fractional distance from steady state,
calculated using eqn (E.9). The calculation of w breaks
down after 6.5 days when the temporal change in pressure
and concentration nears the floating-point precision of the
computer.
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Integration of eqn (E.4) gives

y ¼
1

s
estþg þ yo; ðE:6Þ

where yo is the state of the model domain at
steady state.

We wish to know the closeness of the current
state y to the steady state yo; w:

w ¼
yo � y
yo

: ðE:7Þ

Solving eqn (E.6) for yo and inserting into eqn
(E.7) we find

w ¼
�estþg

sy� estþg; ðE:8Þ

or, by eqns (E.4) and (E.5):

w ¼
�’y2

y .y� ’y2
: ðE:9Þ

This estimate of w can be used only when ’y is log-
linear with a negative slope.

To test the conservation and convergence
characteristics of the model, we ran a 7 day
simulation at f ¼ 20 nodesm�1 and Dt¼ 10.0 s,
with cðz; t ¼ 0Þ and pðz; t ¼ 0Þ both set equal to
zero. The mass balance of both volume and
sucrose content [Fig. E1(A)] can be maintained
at well less than the required 10�8 precision
throughout the simulation, and, as the simula-
tion progresses, this criterion becomes increas-
ingly easy to meet [Fig. E1(B)]. Sucrose mass
balance is superior to volume conservation
because of the sucrose conservation equation’s
linearity. The pressure and concentration con-
vergence estimates w are shown in Figs. E1(C)
and (D), as is the rate of change in these
quantities, which varies log-linearly with time.

Appendix F

Model Resolution

Near-perfect mass balance is achieved in this
simulation irrespective of temporal or spatial
resolution. However, a drop in resolution can
lead to changes in the solute profile in ways that
are not necessarily physical. As mentioned
above, to prevent spatial oscillations in ‘‘shock
zones’’ it is necessary to alter the concentration
at the boundary between nodes so that it is
higher than the mean value, thus preventing
solute from ‘‘backing up’’ in the upstream node
(Ewing & Wang, 2001). However, one conse-
quence of this correction is that slightly more



Fig. F1. Pressure p; concentration c; axial volume flux j;
and membrane water flux w at 1 hr into a set of 24 hr
simulations performed at one temporal resolution (Dt¼ 1 s)
and several spatial resolutions ( f ¼ 2; 4, 8, 20, and
200 nodesm-1) in an idealized sieve tube of length
L ¼ 5m, as described in Appendix F.1. All other para-
meters are as described in the legend to Fig. 3.

Fig. F2. The standard deviations of the profiles of
pressure and concentration between each of the lower
spatial resolution simulations ( f ¼ 2; 4, 8, and 20nodesm�1)
and the high spatial resolution simulation ( f ¼ 200
nodesm-1) at Dt¼ 1 s. These data are from the same
simulations as in Fig. F1, described in Appendix F.1. The
standard deviations are highest early in the simulations and
decline after 3 hr, as the concentration front reaches the far
end of the sieve tube. The early noisy differences between
the concentration profiles of the different simulations is a
local effect of the slope-limiting total variation diminishing
(TVD) method applied to the front, as used in this work. It
does not reflect significant changes in the concentration
profile, just a phase shift between those variations among
simulations of different spatial resolution.
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solute is transported through the ‘‘shock zones’’
than is actually merited by the solution velocity
at low spatial or temporal resolution. This effect
is called ‘‘solute smearing’’.

Another problem that occurs at low resolution
is due to the discrete nature of the model
domain. As solute flows from one node to the
next, that solute is immediately distributed
evenly throughout the downstream node, irre-
spective of its length, smearing the concentration
front. When Dt or Dz is large, the effect, called
‘‘numerical diffusion’’ (Fried, 1975), is to add a
diffusion term to the solute conservation equa-
tion. Both solute smearing and numerical diffu-
sion disappear at high temporal and spatial
resolutions.
The simulation is robust to Courant numbers
Cr of up to 0.4, where Cr is given by:

Cr ¼ v
Dt

Dz
; ðF:1Þ

and improves as Cr becomes very small. In the
following sections, we address the minimum
spatial and temporal resolution necessary to
limit the strength of solute smearing and
numerical diffusion under non-steady-state and
steady-state conditions, for a 5m sieve tube,
whose parameter values are identical to those
described in Section 3.1.

F.1. SPATIAL RESOLUTION

Five 24 hr (86 400 s) simulations of a 5m sieve
tube were performed at Dt¼ 1.0 s and f ¼ 200;
20, 8, 4, or 2 nodesm�1. Figure F1 shows the
state of pressure, concentration, axial flux, and
membrane water flux of these simulations at
t ¼ 3600 s (1 hr). Irrespective of spatial resolu-
tion, the major features of the simulations agree,
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except at low resolution where the concentration
front is smeared relative to simulations run at
higher resolutions. This, of course, has its effect
on pressure, membrane water flux, and axial
velocity, as well. However, at high resolution, the
concentration front is extremely sharp, whereas
when f drops below 20nodesm�1, the front is
largely gone. We attributed the divergence
among simulations to be largely the result of
increased solute smearing at lower resolutions.

The standard deviation of the differences in
concentration and pressure between lower reso-
lution simulations and the f ¼ 200 nodesm�1

simulation were calculated for each (Fig. F2).
For pressure, low-resolution simulations deviate
from the high-resolution simulation only mini-
Fig. F3. Pressure p; concentration c; axial volume flux j;
and membrane water flux w at 1 hr into a set of 24 hr
simulations performed at one spatial resolution
( f ¼ 20 nodesm�1) and several temporal resolutions
(Dt¼ 1, 3, 6, 15, and 30 s) in an idealized sieve tube of
length L ¼ 5m, as described in Appendix F.2. All other
parameters are as described in the legend to Fig. 3.
mally at first, increasing later as the system
approaches steady state. This increase is due to
solute smearing at low resolution, which causes
excess sucrose to be removed from the system via
the unloading zone than would otherwise be at
higher resolution. In fact, the total sucrose
content of the system increases more slowly on
approach to steady state for low-resolution
simulations that it does for high-resolution
simulations. This is borne out in the standard
deviations in sucrose concentration between the
simulations, where, following an initial state of
high variability prior to t ¼ 3 hr, which will be
explained shortly, the deviation between simula-
tions also increases with time.

After t ¼ 3 hr, the sucrose front has arrived at
the far end of the tube. But prior to that, the
concentration front is its own moving ‘‘shock
zone’’, and the slope-limiting total variation
diminishing (TVD) method used here introduces
some temporal variation at the front in the rate
at which solutes are allowed to pass from one
node to the next. This variation occurs at
different frequencies at different spatial resolu-
tions, proportionally to the front velocity
divided by the node spacing. The effect is to
produce oscillations in the standard deviation of
Fig. F4. The standard deviations of the profiles of
pressure and concentration between each of the lower
temporal resolution simulations (Dt¼ 3, 6, 15, and 30 s) and
the high temporal resolution simulation (Dt¼ 1 s) at
f ¼ 20 nodesm�1. These data are from the same simula-
tions as Fig. F3, as described in Appendix F.2. The
standard deviations are highest early in the simulation
and decline after 3 hr, as the concentration front reaches the
far end of the sieve tube. Thereafter, the differences become
vanishingly small.



Fig. F5. Pressure p; concentration c; axial volume flux j;
and membrane water flux w at 1 hr into a set of 24 hr
simulations performed at one spatial resolution ( f ¼ 4
nodesm�1) and several temporal resolutions (Dt¼ 1, 5, 25,
50, 75, and 150 s) in an idealized sieve tube of length
L ¼ 5m, as described in Appendix F.2. Only data for
Dt¼ 1, 150 s are shown. All other parameters are as
described in the legend to Fig. 3.

Fig. F6. The standard deviations of the profiles of
pressure and concentration between each of the lower
temporal resolution simulations (Dt¼ 5, 25, 50, 75, and
150 s) and the high temporal resolution simulation (Dt¼ 1 s)
at f ¼ 4 nodesm�1. These data are from the same simula-
tions as Fig. F5, as described in Appendix F.2. The
standard deviations are highest early in the simulation
and decline after 3 hr, as the concentration front reaches the
far end of the sieve tube. After this point, the differences
become vanishingly small.
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concentration between the low- and high-resolu-
tion simulations. In fact, though we performed
these simulations at a 1 s time step, we sampled
the data from the simulation every 150 s and the
oscillations seen in the figure are aliased versions
of the noise actually produced between the
simulations. It should be noted that this does
not mean that the TVD method introduces noise
into the calculation itself (as can be seen in
Fig. 3), but rather that it handles sucrose flow
across the front in quantitatively slightly differ-
ent ways depending on the spatial resolution. It
would seem from Fig. F1 that simulations
performed at f ¼ 4 nodesm�1 or better, though
lacking in the fine spatial detail afforded by the
high-resolution simulation, will provide the same
qualitative information as the higher-resolution
simulation.

F.2. TEMPORAL RESOLUTION

To test the effect of drops in temporal
resolution a series of five 24 hr (86 400 s) simula-
tions of a 5m sieve tube were performed at
f ¼ 20 nodesm�1 and Dt¼ 1.0, 3.0, 6.0, 15.0,
and 30.0 s (Figs F3 and F4; temporal resolutions
worse than Dt¼ 30.0 s result in Cr40:4), as well
as another six 24 hr simulations at f ¼ 4
nodesm�1 and Dt¼ 1.0, 5.0, 25.0, 50.0, 75.0,
and 150.0 s (Figs F5 and F6; temporal resolu-
tions worse than Dt¼ 150.0 s result in Cr40:4).

We find that the numerical solution is exceed-
ingly robust to changes in temporal resolution.
Figure F3 shows a comparison for p; c; j; and w;
as in Fig. F1, of the same simulation at
f ¼ 20 nodesm�1 but at different time step
lengths, and at t ¼ 1 hr. Very little difference
can be observed between them, and what
difference is present is stereotypically that of
numerical diffusion, which becomes stronger at
low temporal resolutions (or high Cr). Figure F4
shows profile-wide standard deviations for all t
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from t ¼ 0 to t ¼ 24 hr. Before the sucrose front
reaches the far end of the tube at t ¼ 3 hr, the
error is somewhat higher than it is after, where
the differences between simulations becomes
vanishingly small. The same can be said at
an even lower spatial resolutions ( f ¼ 4
nodesm�1), where differences are due to numer-
ical diffusion at large values of Cr (Fig. F5), and
become vanishingly small once the sucrose front
has reached the far end of the sieve tube
(Fig. F6). It should also be noted that the errors
due to differences in temporal resolution appear
to be linearly proportional to the ratios of time
step lengths (Figs F4 and F6).

The numerical solution presented here appears
to be quite robust at any temporal resolution
(provide the Courant number Cr does not exceed
approximately 0.4). Spatial resolution is far
more critical, especially if the user is need of
accurately shaped concentration profiles, and
also critical for minimizing solute smearing
around the points where the gradient in con-
centration is changing rapidly (i.e. near rapidly
moving sucrose fronts).
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