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We consider the two-dimensional topology of streamlines near a surface where the Navier slip
boundary condition applies. Using transformations to bring the streamfunction in a simple normal
form, we obtain bifurcation diagrams of streamline patterns under variation of one or two external
parameters. Topologically, these are identical with the ones previously found for no-slip surfaces.
We use the theory to analyze the Stokes flow inside a circle, and show how it can be used to predict
new bifurcation phenomena. © 2006 American Institute of Physics. [DOL: 10.1063/1.2337660]

I. INTRODUCTION

The no-slip boundary condition at an interface between a
viscous fluid and a solid surface has been successfully ap-
plied to a large range of flow problems. However, it cannot
be deduced from first principles, and has been continuously
debated in the scientific literature. Almost 200 years ago
Navier proposed a more general boundary condition that al-
lows slip at the surface. The boundary condition states that
the tangential component of the velocity v at the surface is
proportional to the rate of strain at the surface, or equiva-
lently, v, is proportional to the tangential stress oy at the
surface,

A
UH=_O(TH~ (1)
y72

Here u is the viscosity of the fluid and A, the slip length,
describes the “slipperiness” of the surface. In the limit A,
— 0 the standard no-slip boundary condition is recovered,
and for \y— o the fluid flows freely on the surface. The slip
length N\, has a simple physical interpretation:1 If the flow
were linearly extended below the surface, a no-slip condition
would be satisfied at the depth .

There is a strong current interest in slip flows in micro-
fluidics. Slip lengths in the nm to um range have recently
been measured; see, e.g., Refs. 1-5. On the theoretical side it
has recently been proved that the slip boundary condition
may result from a modeling of rough surfaces. It can be
shown analytically6 that no-slip Stokes flow over a wall with
microscopic grooves on the macroscopic level fulfills a
Navier slip boundary condition.

In the present paper we are concerned with the topology
of streamlines of the two-dimensional (2D) flow near a sur-
face where the Navier slip condition is satisfied, and, in par-
ticular, with changes (or bifurcations) in the streamline pat-
terns as external parameters are varied. A systematic study of
bifurcations of streamline topology close to a no-slip wall
based on Taylor expansion of the velocity field was per-
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formed by Bakker’ and extended by Hartnack,® who ob-
tained a simplified expression for the streamfunction, a nor-
mal form, by the application of linear and nonlinear
coordinate transformations. See also the recent review by
Brens.” We also will apply a normal form approach, but the
analysis is different due to the more complicated conditions
imposed on the Taylor expansion coefficients by the bound-
ary condition (1).

Flow topology is of particular interest in connection with
stirring and mixing. A simple, much studied configuration is
Stokes flow inside a circle, driven by rotlets or rollers.'®1
Usually, no-slip boundary conditions are considered, but a
flow with slip boundary conditions was studied analytically
by Palaniappan and Daripa,15 and a rich set of flow topolo-
gies was obtained. We revisit their work, correct an error, and
show how bifurcation theory can be used to find new bifur-
cation phenomena.

Il. THE NAVIER BOUNDARY CONDITION

The tangential stress at the surface can be found from the
viscous stress tensor

O'l'j=,u«((?jvi+(9[vj). (2)

Letting (¢;) denote a unit vector tangential to the interface
and (n;) a unit normal vector pointing into the fluid, the
Navier boundary condition (1) can be expressed as

Uitiz)\otinj(ﬁjvi'Fain). (3)
For a flat wall, the boundary condition reduces to
U= Ng dpvy, 4)

where v is the tangential velocity, and d,v, is its normal
derivative.

For a curved wall with radius of curvature R, Eq. (3) can
be written as'®

1 1\
vi=\T -5 =N 9y (5)
No R

The radius of curvature is counted with sign, R being posi-
tive at points where the flow domain is locally convex. The
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effective slip length A, depends on both physical and geo-
metric properties of the flow, and may, in principle, become
negative for sufficiently small positive curvatures R. This is
not relevant if the slip length is microscopic and the curva-
ture macroscopic, but we note that the bifurcation analysis of
the present paper is valid for all N, # 0.

As we consider flow near an impermeable wall, the no-
flux boundary condition

vn; = 0 (6)

will also be imposed.

The subsequent topological analysis is local and is valid
in some neighborhood of a point on the surface. We intro-
duce an XY coordinate system such that the given point is the
origin and the surface curve is represented by the graph
Y=£(X) with f(0)=/"(0)=0, that is, the surface is tangent to
the X axis at the origin. The flow domain is ¥>f(X). The
analysis will be simplified by changing coordinates such that
the surface curve coincides with a coordinate axis. To this
end we consider a map 7 defined by

f'(x)y

X SREYITE
( )=T(X>= R (7)
Y y

y
Jx) + NewIeD

The Jacobian of T is the identity at the origin, and it follows
from the Inverse Function Theorem that 7 is invertible in a
neighborhood of the origin and hence defines a local change
of coordinates. The inverse transformation 7~' maps the sur-
face curve Y=f£(X) to y=0. Furthermore, 7~' maps lines or-
thogonal to the surface isometrically to lines orthogonal to
the x axis. It follows that

d, = . (8)

We assume the fluid is incompressible and hence a
streamfunction ¢ exists. One finds that

vy =0, 9

in the XY coordinate system, and, according to (8), the
boundary condition (5) becomes

Jyih(x,0) = N (x) T 4(x,0), (10)
where
1 1\
)\a(x)=<)\—0—m> . (11)

The subsequent analysis will hold for any nonzero, suf-
ficiently differentiable function A (x) in (10). In particular,
the results are also valid if the material properties vary along
the surface such that Ay=\q(x). Clearly, the case of \,(x)
being constant is the most basic one, as it includes a planar
surface (1/R=0) and a circular surface with constant radius
of curvature R. However, a general A\ (x) does not compli-
cate the analysis substantially, and, as we shall see, the spe-
cific form of \,(x) plays no role for the type of flow topolo-
gies and bifurcations that can occur.
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The no-flux boundary condition (6) becomes, in terms

of i,
#(x,0)=0. (12)

lll. BIFURCATION OF STREAMLINE PATTERNS
A. Simple and degenerate critical points

The analysis of streamline patterns will be based on the
streamfunction in the xy coordinate system. The streamlines
are level curves of ¢ and can be found from the differential
equations

x:ayw’ y:_&xw' (13)

We expand ¢ in a Taylor series based at the origin,

Yry) = 2 aply, (14)
i,j=0
where
|
aijz_.&j; ﬁ{ﬂ/’((),o)' (15)
iy -

Inserting the expansion (14) in the no-flux boundary condi-

tion (12) yields
ay=0, fori=0,1,... . (16)

The slip condition (10) also gives a sequence of relations
between the Taylor coefficients a;;. The first few are

ag1 = 2X,(0)ag,, (17a)
apn = 2)\a(0)(112 + 2)\;(0)6102, (17b)
ay = 2)\a(0)a22 + 2)\(’1(0)a12 + )\Z(O)aoz. (17C)

If ay,=0, the origin is a critical point for ¢, that is, a
stagnation point. From the Navier boundary condition (17a),
it follows that ap,=0. With the nondegeneracy condition
a;, # 0 the linearization of (13) becomes

(;)=<a51 -311)@’ (18)

which has a regular saddle point at the origin.

It is a basic result from nonlinear dynamics17 that the
local behavior of the streamlines in this case is determined
by the linearization. Because of the diagonal form of the
Jacobian matrix in (18), the dividing streamline is orthogonal
to the surface. This is in contrast to flows near a no-slip
boundary, where the angle depends on the stress and pressure
gradients,8

(19)

If a;; <O the surface curve is tangent to the stable mani-
fold of the stagnation point, which is then a point of separa-
tion. If a;;>0 the surface curve is tangent to the unstable
manifold of the stagnation point, which is then a point of
attachment. See Fig. 1.
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(a) (b)
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FIG. 1. Local streamline pattern near a regular stagnation point on the
surface. The dividing streamline intersects the surface at a right angle. (a)
Separation, a,; <0. (b) Attachment, a;; > 0. Here and in Figs. 2—4, the hori-
zontal line represents the wall y=0 in the transformed coordinates defined
in (7).

If, further, a;;=0 the stagnation point is degenerate, and
the linearized system (18) does not determine the local struc-
ture of the streamlines. Quadratic terms in the streamline
equations (13)—the cubic terms in y—must be taken into
account. With the boundary conditions (17a) and (17b) we
find

= y(ayx* +agy*) + Oy, (20)

where O, denotes terms of leading order 4 in (x,y).
Possible dividing streamlines from the stagnation point

are found by solving ¢(x,y)=0. In addition to the surface,

y=0, there are, assuming the nondegeneracy conditions

a03¢0, a21 750, (21)
the solutions
2a
y=1/- —21|x| + 0. (22)
aps

If ay; and a,; have opposite signs, this represents two divid-
ing streamlines going into the fluid. The two dividing stream-
lines are symmetric with respect to the surface normal. In the
no-slip case, there is, in general, no such symmetry.8 If ap;
and a,; have the same sign, there are no dividing streamlines.
The two situations are illustrated in Figs. 2(a) and 2(b). We
denote this a degeneracy of order 3.

If one of the nondegeneracy conditions in (21) is vio-
lated, (22) does not resolve the structure of the flow close to

(a)

\./ (©)

(b) o

A
&

FIG. 2. Local streamline patterns near degenerate critical points on the
surface. (a) Here a,;=0, a3, and a,; opposite sign. Two separatrices go into
the fluid from the critical point. (b) Here a;;=0, ags,and a,; same sign. No
separatrices exist. (¢) Here a;;=a,;=0, ag3 # 0, a3; #0. A single separatrix,
tangent to the surface, enters the flow.
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the origin. Considering the degeneracy of order 4, where
a,;=0 but ayp; #0, we have

= y(agy” + a3 x’ + apxy® + agy’) + Os. (23)

Some terms can be removed by the near-identity quadratic
transformation
ai3 do4 -

>y — — gy — —y 2 24
y—y 3ao3xy 3a03y (24)

which yields the normal form
= y(agsy” +azx’) + Os. (25)

If a3; # 0, we find a solution to =0 of the form

y=1/- 22100, (26)
aops

which is defined when x has the opposite sign of as;/ag;.
It represents a single separatrix, tangent to the surface. See
Fig. 2(c).

B. Unfolding the degeneracy of order 3

To analyze how the streamline pattern changes when the
parameters take values close to the degeneracy ag=a;;=0,
we consider them as small parameters,

€1=ag;, €& =4ay, (27)

and impose the nondegeneracy conditions (21). This two-
parameter family of streamfunctions is denoted an unfolding
of the degeneracy. We aim at obtaining a simplified normal
form by coordinate transformations and possibly reduce the
number of parameters in the process, thus generating a sim-
pler unfolding. The number of small parameters in the nor-
mal form is the codimension of the degeneracy.

As the flow topology of the degenerate case &;=g,=0
depend only on cubic terms of the streamfunction, cf. (20),
one would expect that operating on a truncation of the ex-
pansion of the streamfunction (14) to third order would suf-
fice. This is indeed the case with no-slip boundary
conditions,® but for finite slip lengths the links (17) between
expansion coefficients at different orders complicate matters,
and errors occur if truncation is done too early in the process.
Hence, we will transform the full expansion (14), and only
truncate after the coordinate transformations.

To obtain a normal form, we apply a coordinate trans-
formation,

x=xy+Aé+Bny, y=mn A#0. (28)

The transformation is chosen to map the surface curve y=0
to the line 7=0. Inserting the transformation in ¢ and mak-
ing a Taylor expansion at the origin (£, 7)=(0,0), we obtain
an expression of the form

l7/= 7]2 5i_j+l§i77i’ (29)
i.j=0
where the lowest order coefficients are

oy = dyihlx,0), (30a)
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oy = B, d,1(x,,0) : Ay ix0,0) (30b)
= ) b + NN ) b b
ap x Oy X 20, (x0) }lﬂ X0
[ill =Aax (7y¢(x0’0), (30C)
d, 0. ,0
12 =ABJ 3,{x0,0) 4+ 420000
27\(1()50)
N (x0) 0, ¢(x0,0
N 0) 0d
)\a(xo)
We can obtain the simplification
a=0, ap=0, (31)
if
ax &yllj(xo’o) = 03 (323)
N(xo) 9, ,0
_ ;( 0) »1#(160 ) . (32b)
)\a(.xO) &i (%,lp(XQ,O)
To solve (32a) for x,, we use (14) to obtain
y dyih(x,0) = &5 + 2a5x0 + > iapxy ' = g(xpe).  (33)
i=3
From this,

d
2(0,00=0, ~50,0) = 2a,, # 0, (34)
&XO

and it follows from the implicit function theorem that there
exists a function xy(e;) with x5(0)=0 such that
d,0,(xo(€,),0)=0. By implicit differentiation, one obtains

Xo=— 2+ O(eD), (35)
26121

and (32b) becomes

A,(0)
=—""—¢g, +0(g,&,). 36
4021)\a(0)281 (e1.2) (36)
With these choices, the transformed streamfunction is
T_ |~ 4o S
y=mn|dy + n+ay& +apn |+ Oy, (37)
2)\a(x0)
where
ap = O(ey,&,), (38a)
@y =A%y + O(ey,8,), (38b)
apy=ap+ O(ey,8). (38¢)

We can choose A to give a,; and dy; the same absolute
value,

Aoz
A= —

asy

+ 0(81,82), (39)

and divide the streamfunction by a factor a3 to obtain
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> N/ N[/
D

E <O

s=-1

s=+1

E=0 E>0

FIG. 3. Bifurcation of streamline patterns for the codimension one normal
form (41) as the bifurcation parameter E changes sign. The top row is a
bubble merging bifurcation (s=-1), where two critical points on the surface
merge and lift off the surface as E is decreased. The bottom row is a bubble
creation bifurcation (s=+1); here a recirculating zone attached to the sur-
face is created as E is decreased.

b=n(E+aEn) +s&+ 1) +0,, (40)

where E=ay/ap=0(g;,e,) is a small parameter,
a=1/(2N\,(x)d@ps), and  s=sign(@,,/dy;) =sign(as;/ags).
Finally, dropping the O, term and renaming the coordinates
back to x,y we obtain the normal form

Y=y(E+ aEy + sx* +y?). (41)

The normal form has only one small parameter, and hence
the degeneracy has codimension one.

The analysis of the streamline topology of (41) is
straightforward. Critical points on the surface are determined
from d,y(x,0)=E+sx*=0. Thus there are two critical points
for Es <O which merge for E=0 and disappear for Es>0.
Critical points off the surface satisfy d,¢/=0 which gives
x=0. Then u(0,y)=3y?’+E=0 has one positive solution for
E<0 and no solutions for £>0. The type of the critical
points is found from the determinant of the Jacobian matrix.
If it is positive, the critical point is a center, if it is negative
the critical point is a saddle.

The bifurcation diagrams are shown in Fig. 3. For
s=+1 a recirculating bubble attached to the surface is cre-
ated or destroyed, and we denote it a (bubble) creation bi-
furcation. For s=—1 the two saddle points on the surface for
E >0 will typically be ends of recirculating bubbles, attached
to the surface away from the local region in other saddle
points. Hence, this bifurcation is denoted a (bubble) merging
bifurcation.

Note, that the variation of A, along the wall is effectively
transformed away in the normal form (41). Hence, both the
bubble creation and bubble merging bifurcation may occur in
slip flows close to surfaces of arbitrary shape. In other words,
the wall shape does not impose any topological constraints
on the streamline pattern, although the specific details of the
shape of the streamlines will of course depend on \,(x).

C. Unfolding the degeneracy of order 4

If one of the nondegeneracy conditions (21) are broken,
the analysis above does not hold. Here we consider the case
where a,; is also a small parameter and hence set

g=(e1,85,83) = (ag,a;,az1), (42)
and assume the nondegeneracy conditions

aos * 0, asg # 0. (43)
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We proceed as in Sec. III B to obtain a normal form,
now including terms up to order four in . We apply a trans-
formation of the form

x=xo+Aé+By, y=n+Cén+Dyt, A+0, (44)

and again obtain a series for the transformed streamfunction,

b=n2 @y (45)
i,j=0

For the degenerate case £=0, Eq. (23), we removed two
fourth-order terms by an appropriate quadratic transforma-
tion. This can also be obtained here by suitable choices of C
and D. We find, when £=0,

(704 =dy+ 3D(103, (46)
and since
ddgy
——=3ap3 70, 47
D aps (47)

it follows from the implicit function theorem that there exists
a function D=D(g) with D(0)=-ay,/(3ay;) which solves
a4=0. By similar arguments, we can choose C such that
a,3=0. Furthermore,

@y = AP, 0,(x0,0) + AC3, 3, (x,0). (48)
We can solve a,;=0 for x, by noting that, when x,=0,
a,;=0 and

—= =3A%;, # 0. (49)

The coefficient B appears linearly in d,,, and hence we can
obtain @,,=0 by solving for B. We omit the details.
With these simplifications we have

=@y + A+ @+ Apén+ A + @3 E) + Os,
(50)
where four coefficients are small,

a1 = dyihlx0,0), (51a)

1
502: (D+ —>(9y¢(.x0,0)+B(9x ayl/f(.x0,0), (Slb)

2)\61()60)
Cl"] 1= C (9ylﬂ(x0,0) + z?x (9ylﬂ(x0,0) . (5 1C)
_ (€ M) )
= (xa(x()) a0
+ (D—BC+ )\a(x0)>(9x Ay h(x0,0). (51d)

Note that a, and a;, can be expressed as linear combinations
of the two other coefficients ay, and a;;. Hence the stream-
function now only depends on two small parameters to
fourth order. The codimension is two.

The remaining coefficients are nonzero:

doz =ag3 + O(&), (52a)
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531 =A36l31 + 0(5) (52b)

Choosing

3
A=/28 L 0®) (53)
asg

makes the coefficients to 7° and &€ identical, and dividing
by their common value we obtain

¥=1[F + GE+ (aF + BG)n+ (yF + 8G)én+ P + €]
+ Os, (54)

where F,G are small parameters. The four constants
a,B,y,0 link the four small coefficients, as described in
Egs. (51). As the following analysis will show, the bifurca-
tion structure does not depend on their value. Finally, we
rename the coordinates back to x,y and drop the Os term to
obtain the normal form

Y=y[F + Gx + (aF + BG)y + (yF + 6G)xy + y* + x°].
(55)

Critical points on the surface are found from
Y 3
u(x,O):a—(x,O)=F+ Gx+x’ =0, (56)
Y

which has up to three solutions. The number of solutions
changes when the discriminant of the cubic is zero, that is,
when

31
G=-3 ZFZ. (57)

In the F', G parameter plane, this is a cusp-shaped curve. One
easily finds that the bifurcations on one branch of the cusp
are bubble creation, and the bifurcations on the other branch
are bubble merging. To find off-surface critical points, we
consider u(x,y)=0 and v(x,y)/y=0. In these two equations,
F,G appear linearly, and we can solve to obtain

F=-3y2+0;, G=-3x>+0;. (58)

Bifurcation occurs when the Jacobian matrix J of the vector
field at the critical point has a zero determinant. Inserting
(58), one finds

det J =36xy* + O,. (59)

Hence, to leading order, bifurcations off the surface occur for
x=0, and, according to (58), for G=0,F <0. The bifurca-
tions here are cusp bifurcations, where a center and a saddle
merge and disappezur.'8 The bifurcation diagram is shown in
Fig. 4.

IV. BIFURCATION OF PATTERNS FOR STOKES FLOW
INSIDE A CIRCLE

A. Solution procedure

As an application of the previous results we shall solve a
simple two-dimensional incompressible Stokes flow inside
the unit circle driven by rotlets.
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1

G

==\
AVOV

FIG. 4. Bifurcation diagram for the codimension two normal form (55). In
each sector, bounded by the heavy bifurcation curves, the corresponding
streamline pattern is shown. The degenerate patterns occurring on the bifur-
cation curves is shown inside circles. The bifurcation at G=0,F<0 is a
creation/destruction of two off-surface critical points (cusp bifurcation). At
G=-3 €F2/4,F<(),Lbubble merging bifurcation occurs; cf. the top row of
Fig. 3. At G=—33VF?/4,F>0 a bubble creation bifurcation occurs; cf. the
bottom row of Fig. 3.

We use polar coordinates (r, ) such that the velocity
field is given by

1
U,=— _aﬂlp’ Vg= arlﬂ (60)
r

The streamfunction satisfies the biharmonic equation
A%yd(r,0) =0, (61)

for 0<r<1 and 0= 6<<2m. The no-flux boundary condition
is

W(1,6)=0, (62)

and, as d,=—d, and v;=v,, the Navier boundary condition (5)
becomes

g(1,0) ==\, FF(1,06). (63)

The radius of curvature R=+1 is constant and positive, since
the flow domain is convex. Hence, \,=(1/\o—1)"! is a con-
stant.

We consider the case where the flow is driven by a point
rotlet of unit strength centered at (r,)=(c,0), c<1. The
rotlet streamfunction is ¢;=log p, where p denotes the dis-
tance to the rotlet center. Following Ref. 12, we expand the
streamfunction for r<<c and any 6,

Y, (r, ) =log p=1log \r* + c* = 2rc cos 6
Sl
= log r—z—p cosnf|. (64)
n=1

The full solution to (61) is written as a sum of the rotlet
streamfunction and a correction due to the boundaries

lvb(rve):llfl(raa)-l_(ﬁ(rve)' (65)

Assuming analyticity, the correction term can be expanded,
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[

&(r,0) = 2, (a,”" + b,r'"**)cos n, (66)
n=0

and inserting in the boundary conditions (63), the coeffi-
cients become

1-\
:—a, b:— . 67
ap 2(1+1,) 0 ag (67)
_c_”(l+)\a)(l+n) N— 1

n

" N (1 +20)

a, =

" n 1+N(1+2n)°

(68)
forn=1,2,... .

The solution procedure is immediately generalized by the
superposition to flows generated by any number of rotlets of
arbitrary strength.

This problem is also considered in Ref. 15, but with the
erroneous boundary condition

GyA1,60) =N, T Y(1,6). (69)

This is the relevant Navier boundary condition for the flow
outside the unit disk, where the normal derivative at the
boundary is d,=d,, and is correctly used for that case in
Ref. 19.

B. Numerical results

Using the procedure described above, we have found
streamline patterns for the flow generated by two rotlets. One
rotlet of unit strength is held fixed at (r,0)=(1/2,7). The
other rotlet has strength o and is placed at (r, 6)=(c, B8). The
flow pattern thus depends on four parameters, including the
slip length \,.

The series (66) converges slowly when c is close to 1. To
avoid numerical problems, we restrict ¢ to [0;0.9]. The Tay-
lor series for the streamfunction is truncated after 30 terms,
where we obtain the L, norm of ¢ at the boundary to be less
than 10715,

To explore the parameter space, we have used the fol-
lowing scheme: For fixed values of o and N, we scan the
(c, B) parameter space, counting the number of sign changes
of the tangential velocity v,(1,6) at the boundary for each
value of (c¢,B). This gives an indication of the number of
separation bubbles in the flow, as each zero of v, corre-
sponds to a critical point on the surface.

Typical results are shown in Fig. 5, where the number of
separation bubbles is indicated by a shade of gray. The
boundaries between regions of different shades are curves of
creation or merging bifurcations. Representative streamline
patterns are shown in Fig. 6. On the large scale, it may ap-
pear that the dividing streamlines do not meet the surface at
right angles, as predicted by the theory of Sec. III A. How-
ever, zooming to a scale comparable to the slip length A,
Fig. 6(d), we see that this qualitative feature of the stream-
line pattern is indeed fulfilled.

When >0 and the two rotlets have the same sense of
rotation, only creation bifurcations are found; see Fig. 5(a)
and 5(c). For <0, merging bifurcations also appear. In a
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(a) (b)

(@) @

B0 bubbles  1bubble 2 bubbles

FIG. 5. Bifurcation diagrams in the (¢, ) parameter plane for fixed values
of o and \,. The fixed rotlet is marked by a X. (a) 0=0.5, \,=0.01. Stream-
line patterns corresponding to the three markers + are shown in Fig. 6. (b)
0=-0.5, \,=0.01. (¢c) 0=0.5, \,=0.2. (d) 0=-0.5, A\,=0.2.

blowup of Fig. 5(b), as shown in Fig. 7(d), we see a creation
and a merging bifurcation curve meet in a codimension two
point. In agreement with the theory of Sec. III C, the two
curves meet in a cusp. Furthermore, the theory predicts the
existence of a curve of off-surface bifurcations emanating
from the codimension two point. To find bifurcation of off-
surface critical points, we consider the two curves (isoclines)
in the physical space where v,=0 and v,=0. Critical points
are located at the intersection of the two isoclines, and by
monitoring whether they intersect or not we have found the
curve of off-surface bifurcations, as shown in Fig. 7(d).

FIG. 6. Streamline patterns corresponding to the three markers in Fig. 5(a).
In all cases B=/4. (a) c=0.28. (b) ¢=0.50. (c) ¢=0.71. The heavy lines are
dividing streamlines from the on-wall stagnation points. (d) A blowup of the
region close to the left on-wall stagnation point in (b).
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(b)

(d)

FIG. 7. Flow patterns close to a codimension 2 point, (¢,8)=(0.516,2.93)
for 0=-0.5, \,=0.01, are shown in (a)-(c). A blowup of the corresponding
bifurcation diagram in Fig. 5(b) is shown in (d). (a) ¢=0.535, 8=2.91. (b)
¢=0.502, B=2.91. (c) c=0.522, B=2.97.

V. CONCLUSIONS

For 2D flows near a surface with a Navier slip boundary
condition with a finite slip length, we have analytically ob-
tained bifurcation diagrams for streamline patterns under the
variation of one or two external parameters. The qualitative
structure of the bifurcations and the possible streamline pat-
terns do not, perhaps surprisingly, depend on the value of the
slip length, nor on the curvature of the surface.

Furthermore, the two bifurcation diagrams, Figs. 3 and
4, are, from a strict topological point of view, identical to the
ones obtained for a no-slip surface,’® although the normal
forms and their derivations are different. We find only a few
qualitative differences between the streamline topology in
the no-slip and the slip case that are of a geometric rather
than a topological nature: For a regular critical point, the
dividing streamline is orthogonal to the surface in the slip
case. For no-slip flows, the angle can take any value, depend-
ing on the gradients of surface stress and pressure. For a
degenerate critical point of order 3, dividing streamlines are
symmetric in the slip case. This does not necessarily occur in
the no-slip case.

We have used the bifurcation theory to analyze the pat-
terns in a simple Stokes flow generated by singularities. We
have found both kind of bifurcations described theoretically.
Bifurcations of critical points at the surface are easily found
from the solution of the Stokes problem. Having located a
bifurcation point of codimension two, the theory predicts fur-
ther bifurcations off the surface that we subsequently have
identified. Hence, the theory not only gives a basic overview
of possible changes of streamline patterns, it also provides a
guideline for a practical determination of bifurcations.

The present analysis may be extended to 3D flows. A
bifurcation analysis is outside the scope of the present paper,
but a basic fact is worth mentioning. Consider the no-slip
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flow close to a planar surface given as the x,y plane in an
xyz coordinate system. It is well known®®* that if the origin
is a regular critical point, the streamlines are locally de-
scribed as solutions to a linearized system of the form

. ap ap a

X X

. d an ar;

1= ay +a ' (70)
. 11+ dx»

z 0o 0 - —2

For a flow fulfilling the Navier boundary conditions (4) and
(6), it is not difficult to show that the corresponding equa-
tions become

X ap; ap 0 X
y|=|an axn 0 y . (71)
Z 0 0 —(ap+ap/\z

In the latter case, a streamline going into the fluid from the
critical point will be orthogonal to the surface. This need not
be the case for Egs. (70), similar to the 2D flow. Whether the
bifurcation structure, depending on nonlinear terms of the
velocity field, differs in the two cases, remains to be seen.
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