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Abstract

The paper presents a two-dimensional immersed interface technique for the Vortex-In-Cell (VIC) method for simulation of flows past
bodies of complex geometry. The particle-mesh VIC algorithm is augmented by a local particle-particle correction term in a Particle—
Particle Particle-Mesh (P*M) context to resolve sub-grid scales incurred by the presence of the immersed interface. The particle—particle
correction furthermore allows to disjoin mesh and particle resolution by explicitly resolving sub-grid scales on the particles. This P°M
algorithm uses an influence matrix technique to annihilate the anisotropic sub-grid scales and adds an exact particle—particle correction
term. Free-space boundary conditions are satisfied through the use of modified Green’s functions in the solution of the Poisson equation
for the streamfunction. The concept is extended such as to provide exact velocity predictions on the mesh with free-space boundary
conditions.

The random walk technique is employed for the diffusion in order to relax the need for a remeshing of the computational elements
close to solid boundaries. A novel partial remeshing technique is introduced which only performs remeshing of the vortex elements which
are located sufficiently distant from the immersed interfaces, thus maintaining a sufficient spatial representation of the vorticity field.

Convergence of the present P*M algorithm is demonstrated for a circular patch of vorticity. The immersed interface technique is
applied to the flow past a circular cylinder at a Reynolds number of 3000 and the convergence of the method is demonstrated by a sys-
tematic refinement of the spatial parameters. Finally, the flow past a cactus-like geometry is considered to demonstrate the efficient han-
dling of complex bluff body geometries. The simulations offer an insight into physically interesting flow behavior involving a temporarily
negative total drag force on the section.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Vortex methods have in the past proven valuable
numerical tools in the prediction of complex unsteady
flows due to their robustness and lack of time consuming
mesh generation required in traditional Eulerian methods
cf. [1-14]. They utilize a discretization of the vorticity field
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by particles and a Lagrangian formulation of the governing
Navier—Stokes equations to determine their evolution. The
major advantages of the classical vortex method over grid-
based methods are an automatic adaptivity of the compu-
tational elements and low numerical dissipation. However,
in terms of computational cost, the method is rendered
impractical for high-resolution simulations due to the N-
body problem involving the mutual interaction of all N,
vortices for the calculation of the fluid velocity field. This
leads to a cost of (Q(Nf,) and limits the practically usable
number of computational elements. Fast multipole meth-
ods have been developed to reduce the computational cost
to O(N,logN,) [15]and O(N,,) [16]. For problems with sim-
ple geometries, alternative hybrid particle-mesh algorithms
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such as the Vortex-In-Cell (VIC) method offer a computa-
tional cost of O(N,logN,) or O(N,) by employing fast FFT
or iterative solvers for the field equation on a grid. High-
order moment conserving interpolation kernels [17,18] are
used for the projection of the vorticity field from the parti-
cles to the mesh and the interpolation of the fluid velocity
to the particles to retain the accuracy of the method.

Immersed interface methods utilize fast Poisson solvers
on a regular mesh and enforce the appropriate boundary
conditions on immersed interfaces through an additional
forcing of the dynamics of the flow, e.g. through body
forces [19-24]. The enforcement of the boundary condition
on the immersed interface is reduced to determining the
proper forcing which is typically computed iteratively dur-
ing the time stepping procedure [25]. The immersed inter-
face techniques in vortex methods enjoy the advantage
of a clear separation of dynamics and kinematics,
ensured by the velocity—vorticity formulation. Moreover,
the dynamics is computed on the particle, thus removing
the Courant criterion traditionally limiting the time step
in Eulerian methods.

The present work uses a novel particle—particle particle—
mesh (P*M) immersed interface method for particle meth-
ods in the framework of the Vortex-In-Cell method with
the following features: (i) efficient solution of the Poisson
equation using a fast FFT solver, (ii) exact prescription
of free-space boundary conditions using a minimum num-
ber of grid points, (iii) automatic resolution of sub-grid
scales through the application of direct particle—particle
interaction corrections in the near field, (iv) whilst we pres-
ent a two-dimensional implementation the method is read-
ily extendible to three dimensions (3D). However, in 3D to
ensure a divergence-free vorticity field we expect to replace
the random walk technique with, e.g., the Particle-
Strength-Exchange (PSE) scheme [26]. The proposed P*M
algorithm replaces tree-based algorithms such as the fast
multipole method by computing the interaction of distant
particles on the mesh and the interaction of particles in
close proximity through an influence matrix technique
and an exact particle-particle correction term.

The convergence of vortex methods requires an occa-
sional re-initialization of the particles to ensure the spatial
representation of the fields particularly in regions of signif-
icant strain in the flow [27,28]. This re-meshing is straight-
forwardly implemented in a VIC scheme through the use of
the VIC particle-mesh moment conserving interpolation
formulae, but special treatment is required near the
immersed interfaces to avoid the creation of fluid particles
within the solid region. For bodies of regular shape the
geometric properties can be exploited [7] but for irregular
bodies the conservation of the statistical moments is
non-trivial and one-sided formulae are usually applied,
cf. Ploumhans and Winckelmans [12]. Further need for a
regularized particle pattern arises from the use of diffusion
schemes like the PSE by Degond and Mas-Gallic [29]
which require a continued remeshing throughout the
domain to (i) secure a regular particle map and (ii) obtain

a mechanism for creating particles at the boundaries of the
vorticity field. In this study the random walk method [30] is
utilized for the modelling of the diffusion term of the
Navier—Stokes equation. This method has been shown to
provide sufficiently accurate results for engineering applica-
tions, e.g. in bridge aerodynamics [31]. Moreover, it is sub-
stantially less sensitive to the particle layout. Use of this
fact is made in regions adjacent to the body surface and
a partial remeshing strategy is proposed which refrains
from replacing particles that would, according to the inter-
polation kernel, create particles inside the solid body. This
ensures a sufficient vorticity support and uniform particle
spacing in most of the domain but relies on a particle cre-
ation strategy consistent with the random walk method
used herein.

The paper is organized as follows: The governing equa-
tions are described in Section 2. The classical vortex
method is outlined in Section 3, and the proposed VIC
immersed interface method is described in Section 4. The
partial remeshing technique is described in Section 5. Sec-
tion 6 presents the results obtained with the present algo-
rithm including the study of a patch of vorticity to
demonstrate the convergence of the P°M algorithm (Sec-
tion 6.1). The convergence of the immersed interface
method is presented in Section 6.2 for the flow past a circu-
lar cylinder at moderate Reynolds number, and the impul-
sively started flow past a cactus-like geometry is presented
in Section 6.3 to show the flexibility of the proposed algo-
rithm. Finally, concluding remarks are made in Section 7.

2. Governing equations
2.1. Fluid motion

The dynamics of a two-dimensional, incompressible
fluid flow at constant kinematic viscosity v in a domain
2 bounded by 02 = % is governed by the vorticity trans-
port equation

ow

E—F(u-V)a):sza), (1)

where u is the velocity, @ = V x u = we, the fluid vorticity,
and e. is a unit vector perpendicular to the plane of the
velocity field. The incompressibility condition V-u =0
allows the definition of a solenoidal streamfunction Y,
such that u = V x (Ve,) + U, where U, is the free-space
velocity such that

u(x) - U, as |x| — oo, (2)

and the vorticity and the stream function are related
through the Poisson equation

V¥ = —o. (3)

Alternatively, Eq. (3) can be written in integral form by
observing that — ;- log|x| is the two-dimensional free-space
Green’s function to V2. Thus
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Y(x) =

+2—17T/L10g\x—ylw(y)dy, (4)

and the fluid Velocity is
/ / (x=y) x o) ————=dy. (5)
Ix y\

2.2. Boundary conditions

u(x) =U,

The kinematic velocity boundary condition at the solid
surface states that the surface is impermeable

ll(x%) Ry = 0, (6)

and ny is the surface unit normal vector. The velocity
boundary condition (6) is related to a boundary condition
for the vorticity [32] through the kinematic relation of Eq.

(5)
1 (x5 — ) x o(y)
2n /9/; I’

where &4 is a fluid layer of infinitesimal thickness adjacent
to the surface %, and the vector J(x5) describes the in-
duced velocity from the vorticity in the fluid excluding
the contributions from Z4. Eq. (7) may be written as a sur-
face integral by defining the surface vortex sheet (y = ye.)
through:

dy = J(xy) + U, (7)

% =w, and y= }glg i wdn, (8)
where 7 is the surface normal. Thus

l B Yy 2,

27[ y%’|

The components of the vector equation (9) are Fredholm
integral equations in the unknown 7. The two equations
(9) are identical to one another cf. e.g. [12], and the solution
is unique up to a constant, i.e. an infinite number of solu-
tions exists. The solution is rendered unique by imposing a
global constraint on the vorticity, that the time rate of
change of the total vorticity be zero (Kelvin’s theorem)

%//dex:o. (10)

The system of equations (9) and (10) may be solved by
removing the singularity of the kernel (Eq. (9)) cf. [33] or,
as in the present implementation, by the method of least
squares. In most previous works cf. Refs. [34-38] the Eq.
(9) is solved for the zero tangential velocity resulting in a
Fredholm equation of the second kind. However, the pres-
ent study follows previous implementations by one of the
authors [10] enforcing the normal velocity component,
resulting in a Fredholm equation of the first kind. More-
over, the no-slip condition (u(xy)- sy =0), where s4 is
the unit tangential vector, is imposed implicitly as a conse-
quence of Egs. (1) and (9) subject to Eq. (10). It is interest-
ing to note that, assuming the solid is located at n = 0 (Eq.

(8)) and the vortex sheet extends from n = 0ton = 0", both
the inviscid and viscous flow can be viewed as satisfying the
no-slip condition. The jump in the velocity occurs in the
fluid reaching the no-slip velocity condition at the surface
at n=0. The inviscid case is a special case of the viscous
problem preserving an infinitesimally thin surface vorticity
sheet, whereas the viscous flow allows diffusion of the sur-
face vorticity into the flow, thus developing a boundary
layer.

2.3. Aerodynamic forces

The total aerodynamic forces are computed from the
time derivative of the fluid impulse [32], which yields the
total force on the system

F:—p%//wxxdx. (11)

The time derivative is approximated with first order finite
differences of the particle impulse.

Pressure forces are computed from the local surface
pressure distribution, which can be computed from the
local surface flux of vorticity

aa)

=l (12)

The flux (dw/0n) is computed from Egs. (1) and (8) and
neglecting streamwise diffusion, thus

dy

op
Os o or|,

3 (13)

0y/0t is given by the effective rate of change of the surface
vortex sheet cf. [10]. The total pressure forces are finally ob-
tained by integrating the surface pressure

F,= ?{pnd%. (14)
%

3. Particle vortex methods

In the following, we outline the central components of
particle vortex methods for the simulation of flow past
bodies of arbitrary shape. The components involve kine-
matics, convection, boundary conditions imposed using
boundary elements, and the modeling of diffusion.

3.1. Kinematics

The classical two-dimensional vortex method is based
on the discretization of the vorticity field by a finite sum
of N, Lagrangian particles located at x, as follows:

Np

Zna —x )T (15)
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I',(?) is the strength of the pth particle and 7, is a smooth
approximation to the delta function, thus lim,_¢n,(|x|) =
d|x|, and

() = o (5). (16)

where ¢ is the core radius and n a smooth cut-off function.
In the present study we employ the second order Gaussian
cut-off [39]

1) =5 (-5) (17)

throughout.

The velocity field in free space is determined from Eq.
(5) using the particles (15) as quadrature points in a
Biot-Savart relation

1 o
u(x) = UOO_E ;Kg(x—xp) x I'ye;, (18)

where the velocity kernel K(x) = x/|x|* has been convolved
with the cut-off function to obtain K, (x) = K * 1,(x).

3.2. Convection

The vorticity transport equation (1) is solved using an
operator splitting technique. The first step involves the
solution of the inviscid Euler equation
Do
Dt
which is approximated by the convection of the vortex ele-
ments, thus

0, (19)

dx,

E = ”P(xp)7 (20)
dr
=0 (21)

where the particle velocity is computed from (18) using
efficient fast multipole methods [16] or VIC techniques
[40-42]. Eq. (20) is solved using standard Runge-Kutta
techniques. After this inviscid step, the strength or the po-
sition of the particles is furthermore modified to account
for the viscous diffusion as described in Section 3.4.

3.3. Boundary element method

The kinematic boundary condition (9) is enforced using
a boundary element technique [43,44]. The geometry is dis-
cretized assuming piecewise linear panels (x;, i=1,...,N))
of approximately uniform length (As;=|x;; — x;]) cf.
Fig. 1, and a linear variation of the surface vortex sheets
(7;) rendering the method second order accurate. Enforcing
the boundary condition at the panel center point, the dis-
crete approximation of the system of Egs. (9) and (10)
reads

My =0b, (22)

Fig. 1. Schematic of the boundary element discretization. The surface
vortex sheet strength is linear along a panel. The boundary condition is
enforced at the panel center point (x). Also indicated (@) are the blobs
created from the surface sheet strength and to be released in the next step.

where M is the influence matrix describing the mutual
induction of the vortex sheets, and includes a separate
equation for the enforcement of the Kelvin theorem. The
right-hand side (b) contains all external influences, and
the system of equations is solved in the least squares sense.
The influence matrix is constant for non-deforming bodies
undergoing an en bloc solid body motion and is inverted
only once and stored for efficient solution of Eq. (22).

To retain the accuracy and discrete satisfaction of the
boundary conditions, the velocity induced by the surface
vortex sheets is included in the convection process explicitly
as an extra term uy to the Biot-Savart equation (18)
reading

s (x) 1 /(x—y.%) X Y04) 408 (23)

I x =y,
At large distances (|x — y,|/As > 15) Eq. (23) is approxi-

mated by a point representation cf. Eq. (18), where
Fl' = ')),‘AS,‘.

3.4. Diffusion modelling

The second step of the fractional step algorithm involves
the solution of the diffusion problem

0w )

E =W w, (24)
ow

I g

3 0, on 4, (25)

which is solved using the random walk technique proposed
by Chorin [30], see also Refs. [45-48]. The method relies on
the probabilistic interpretation of the Green’s function
solution to Eq. (24) and on the relationship between diffu-
sion and random walk of vorticity-carrying particles. The
particle positions resulting from the convection step (X,)
are subjected to a modification as follows:

ol =gtre, (26)
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where £, are random paths according to a Gaussian prob-
ability distribution with zero mean and variance 2vAt¢, and
At is the time step. This procedure is also adopted for the
vorticity release process at the solid boundary where the
surface vortex sheet (y,) is converted into vortex blobs
(I'; = 7;As;) and diffused through a random walk into the
flow [30]. In order to control the number of particles re-
leased in a time step and thus the spatial resolution, a var-
iable number of particles N, =INT(1+ (NT* —1)
|y;As;/T™*]) is created at each panel. The number is chosen
according to the strength of the vortex sheet with an upper
limited N7 corresponding to the panel with the maximum
circulation I"™**. In this study a value of N7 =6 was
found to provide sufficient resolution of the boundary layer
at a tractable computational cost.

Particles entering the solid during a time step may be
reflected [49] to satisfy Eq. (25), detained until the next time
step as proposed by Smith and Stansby [50] or, as in the
present study, deleted as proposed by Chorin [30]. The
error associated with the latter approach is equivalent to
the approximations of the remeshing considered in Ref.
[12]. The remeshing was performed ignoring the presence
of the solid boundaries and particles created inside the sol-
ids were deleted. The subsequent enforcement of the
boundary condition through (22) secured very similar
results to their elaborate one-sided remeshing formulae.

Besides being simple to implement, the random walk
method enjoys a high robustness, but suffers from a low
rate of convergence of ¢(y/v/N,) cf. [51]. Thus, the ran-
dom walk technique is mostly suited for studies of slightly
viscous flows, with small values of v and with a large num-
ber of particles (N,) required to resolve the details of the
flow. Most deterministic diffusion models, on the other
hand, require uniformly spaced computational elements
to ensure accuracy and stability. This also applies to the
PSE scheme [29] which strictly necessitates an occasional
re-initialization of the elements. Other models such as that
by Shankar and van Dommelen [52] maintain the accuracy
between irregularly spaced particles but are computation-
ally expensive. The remeshing required for the convergence
of these diffusion models uses one-sided interpolation for-
mulae in the vicinity of solid surfaces [7] with increased
algorithmic complexity at immersed interfaces [12]. In the
present work we propose a novel partial remeshing strategy
which is outlined in Section 5.

4. A novel hybrid particle-mesh algorithm

The computational efficiency of vortex particle methods
is closely related to the solution of the N-body problem
implied by Eqgs. (20) and (18). While the computational
cost of the direct method scales as CO(N;), the fast multi-
pole method [16] using adaptive tree data structures [53]
reduces the cost to O(N,) cf. Refs. [7,10,12]. However,
for problems in simple geometries the hybrid particle-mesh
Vortex-In-Cell (VIC) algorithm 1is often preferred

[54,55,40,42,56] due to the availability of efficient solvers
for the Poisson equation (3) on a regular mesh. Extensions
to the method include domain decomposition techniques
and locally body fitted meshes to allow treatment of more
complex problems such as the flow past multiple circular
cylinders [4,13].

An alternative approach that avoids the generation of
curvilinear meshes is the immersed interface method by
Peskin [19]. Here the boundary conditions are enforced
on the immersed interfaces through momentum source
terms acting on the regular mesh. The present work com-
bines the immersed interface method of Peskin with the
VIC algorithm using a boundary element description of
the interface. While the VIC method generally provides
an accurate solution to Eq. (3) for smooth vorticity
fields, the discontinuity introduced at an immersed inter-
face results in sub-grid scales not resolved by the VIC
method.

Herein, the Particle—Particle Particle—Mesh (P*M) algo-
rithm by Hockney and Eastwood [57] is employed to
resolve these sub-grid scales using an influence matrix tech-
nique [58], which furthermore allows a disjoined resolution
of the mesh and particles. In the following, the classical
VIC algorithm is outlined along with the required exten-
sions to arrive at the P*M algorithm.

4.1. The Vortex-In-Cell algorithm

The VIC algorithm is based on a smooth projection of
the vorticity carried by the particles onto a regular mesh
and the solution of the Poisson equation (3) using fast iter-
ative solvers or direct solvers through Fast Fourier Trans-
forms (FFTs). To this end, particle-mesh techniques
approximate the vorticity of (15) by a smooth projection
of the particle strengths I',, to the grid. For a Cartesian grid
consisting of N,,= N, x N, nodes spaced at (h,,h,) the
relationship corresponding to Eq. (15) for pure particle
methods then reads

1 &
O, 1) = 1 > W(x, = x)T,. (27)

Herein, mesh and particle quantities are denoted by m and
p, respectively, and W/(x) is the interpolation kernel. Note,
that for free-space problems the grid is chosen and possibly
adjusted such as to cover the particle map. The projection
of the vorticity onto a regular mesh calls for high-order
interpolation formula [18]. In this work we implement the
third order M) kernel proposed by Monaghan [59] for
one-dimensional smooth particle hydrodynamics and later
applied for two- and three-dimensional vortex methods
[18,42,56]. The kernel reading

=3P 3, K<,
M) = 12— )1 =), 1< <2, (28)
0, x| =2
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conserves the total, linear and angular impulse of the field.
Conservation of these first three statistical moments is
required to avoid the production of spurious fluid forces
[32]. The multidimensional interpolation kernel is con-
structed as the Cartesian tensor product of the one-dimen-
sional kernel

W(x,y) = Wx)W(y). (29)

After the projection step (27) the Poisson equation is usu-
ally solved by employing Fast Fourier Transforms or fast
iterative solvers. For the purpose of this study Fast Fourier
Transforms are applied, making use of a technique pro-
posed by Hockney [60] to account for free-space boundary
conditions. The procedure involves an extension of the
computational domain in the free-space direction(s), cf.
Fig. 2, and a mirroring of the Green’s function G in the vir-
tual quadrants to exactly cancel the periodic images caused
by the FFTs. A one-dimensional schematic of the proce-
dure is shown in Fig. 3.

The velocity field can subsequently be computed from
the streamfunction as

u=Vx Ve, (30)

on the mesh using finite differences or through direct
differentiation in Fourier space. To this end, the velocity
is expressed as a convolution of K with the vorticity (Eq.

(3)
u=Kx* o, (31)
where K =V x (Ge,) is the spatial derivative of the

Green’s function to the Poisson equation (3), and thus in
2D

_lexx
2

K(x) (32)

The free-space solution (K) for the velocity is then ob-
tained by the following mirroring for the two components
of K= (K", K")"

2N, — 1

empty empty

empty

0 Nl: 2]\'[:1: -1

Fig. 2. Schematic of the free-space boundary treatment for use with FFTs.

ac ()

A

Lo ’
b G w(z)

T L, | Lz‘ v
ca ol

VY
L U

T x

I I

Fig. 3. The free-space solution of the Poisson equation (3) is obtained
using Fast Fourier Transforms in an extended domain as proposed by
Hockney [60]. The vorticity in the extended region (b) is initialized to zero
and the extended one-dimensional Green’s function: G, (k) = G(k) for
k<N, Gy(k) = G(N — k) for N<k <2N, and G(0) =1 yields the exact
free-space solution. The procedure corresponds to a convolution in a real
space over the pairs of periodic images (c). The contribution to the
convolution from the images (/,=y+y', L=2L,—y—y', 3=2L,—
vty lh=2L.+y—y, etc)is > k2L, [ wdx =0 provided the total
vorticity is zero.

K’F.:+K’F.}O<i<NX (33)
Y YJo<j<N,

I:()chx—l—u = 4Ky, } 0<i<N,—1 a4
KENK—I—LJ = _K{H,j 0<j<N,

[:qzzvv—l—j = K } 0<i<N; (35)
Ky, 1 =+Ki ;0 JO<Sj <Ny —1

1?;/"«**1*1’»2%*171‘ = K10 }0 <Ii<N,—1 (36)
K%Nxfl—itzNy—l—j =K ;0 )0<j<N, -1

iz 5 =y — 0<i<?2N;

K}Y,NJ, =Ky, = N, = K}lvpj = 0} 0< /<N, (37)

The convolution (31) is then performed in Fourier space as
i=Ko. (38)

The resulting velocity field # in the real quadrant is the
solution to the free-space problem. If this exact differentia-
tion is used in the Vortex-In-Cell method, the only source
of errors remaining is the particle-mesh interpolation.

The resolved velocity field is finally interpolated back
onto the particles using

Ny
u, = Z W(x, — Xu) Uy, (39)
m=1

to allow integration of Eq. (20).

Let us consider the velocity field induced by a single vor-
tex blob to study the accuracy of the PM scheme. In Fig. 4
the mesh-resolved velocity field along a line in the x-direc-
tion is shown for a particle located at different posi-
tions with respect to the grid. The discrepancy to the
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4.0

z/h,

Fig. 4. The particle-mesh resolved free-space velocity induced by a single
particle located at different positions and measured along the x-direction.
The (---) exact solution using a Gaussian core of radius ¢ = %hx is
compared to PM solutions with particles located: (—) at the centre of a
cell at [0,0], (--) at [0,34,], (---) at [1A,,1h,]; (thin lines) are results by
fourth order finite differencing of the exact streamfunction solution, (bold
lines) are results using the exact velocity computation on the mesh. All
results are obtained using the M} interpolation kernel.

direct interaction and the anisotropy of the PM scheme is
apparent from this. These inaccuracies stem from unre-
solved sub-grid scales which arise from both the mesh
interpolation and the finite differencing. Fig. 5 illustrates
the superiority of the direct velocity computation to the
finite differences.

4.2. The Particle—Particle Particle—Mesh algorithm

The Particle-Mesh algorithm described in Section 4.1
requires that Eq. (27) is a close approximation to Eq.
(15). This is generally true for systems where either the
mean particle spacing is larger than the mesh spacing
(h/h,> 4 cf. Fig. 4) or for systems with smooth vorticity
fields. Flows around immersed interfaces clearly exhibit
discontinuities in the vorticity field such that the particle
discretized velocity field u, contains sub-grid scales u,, with

u, = ity + Uy, (40)

where @, is the grid-resolved velocity.

4.0
3o 1
2 2.0p:

1.0f

0.0%

Fig. 5. The particle-mesh resolved free-space velocity induced by a single
particle located at the centre of a cell at [0,0] and measured along the x-
direction. The (- - -) exact solution using a Gaussian core of radius ¢ = %hx
is compared to: (--) second order finite differences, (—) fourth order finite
differences, (---) exact velocity computation on the mesh. The M, kernel is
used for the PM projection.

The accuracy of the direct Particle-Particle (PP) interac-
tion and the efficiency of the Particle-Mesh (PM) algo-
rithm have been successfully combined in the hybrid
Particle—Particle Particle-Mesh (P*M) algorithm first pro-
posed by Hockney and Eastwood [57].

The present study makes use of an influence matrix algo-
rithm proposed by Walther [61]. It is similar to the methods
of Anderson [62], Theuns [63], and Phillips et al. [64] but
provides an exact computation of the mesh-resolved field
by an influence matrix technique. This matrix represents
the approximations and anisotropy caused by the differen-
tial operators on the mesh. During the projection step the
resolved velocity field induced by a number of particles
contained within a cell is computed as

ﬁui = Ca(l)j, (41)

where ou; is the velocity at node i induced by a nodal vor-
ticity 8w, at node j. This influence is localized over L nodes,
the near-range region of each cell, cf. Fig. 6.

The influence matrix then has dimension L x M, where
M is the kernel’s number of supporting nodes and the
dimension of vector dw;. For the two-dimensional M, ker-
nel and N, neighboring cells included in the PP correction
M =4x4 and L = (2N, + 2)* cf. Fig. 6. The nodal veloc-
ity values computed by Eq. (41) are subsequently sub-
tracted on the respective nodes, relying on the linearity of
the Poisson equation to cancel exactly the PM contribution
of the particles contained in the originating cell. In the fol-
lowing PP step the exact |x|*1 velocity correction (Eq. (18))
between the particles within the neighborhood provides the
final velocity prediction of the P*M algorithm.

The influence matrix is constructed by placing M indi-
vidual test particles of unit strength at arbitrary positions
in a central cell of the domain and evaluating the corre-
sponding PM-predicted velocity field. The matrix is insen-

Fig. 6. Schematic of the P°M algorithm for the M, interpolation kernel
and three neighbouring cells (N, = 3) included in the particle-particle
correction. The particle (@) assigns to the M = 16 surrounding nodes.
Indicated by the shaded area are the L =64 nodes included in the
influence matrix prediction of the velocity field.
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sitive to the locations of the test particles but they should
be placed sufficiently far apart to avoid a singular matrix.
The projected vorticity of the kth test particle on the mth
grid point 82, is determined using (27). Next, the velocity
field is computed using the Poisson solver employed in the
PM part of the algorithm and sampled at the L nodes
neighboring the sample cell as 8U; ;. Assembling this for
the M test particles forms the following linear system of
equations:

6(]1'4,k = CiJnBQnLk (42)

which can be solved for the elements of C.
Summarizing, the influence matrix P°M technique pro-
ceeds as follows:

(1) Project the particle strengths I',, to the mesh using Eq.
(27).

(2) Solve the Poisson equation V*¥ = — o on the mesh.

(3) Compute the velocity field u = V x e, on the mesh.
(Steps 2 and 3 can be combined if the velocity is com-
puted directly as proposed in Section 4.1.)

(4) Interpolate the resolved velocity field back onto the
particles using Eq. (39), which yields a,.

(5) For each non-empty grid cell perform the following
steps to estimate the PM-resolved velocities at the
neighboring cells induced by the projected vorticity
ow,,,:

(a) Compute the velocity at the neighboring grid
nodes by applying the influence matrix (Eq.
(41)): du,, = Céw,,.

(b) For each of the neighbouring cells project the
resulting velocity to the particles to obtain u,,.

(6) Compute the sub-grid velocities as a local particle—
particle interaction correction u,. using Eq. (18).

(7) Contributions from external velocity potentials are
included as u,,.

(8) The total particle velocity is u, = &t, — ty + Uy + U

Let us consider again the studies on a single particle
from Section 4.1 which illustrated the unresolved sub-grid
scales from the PM method. The velocity resulting from
the P°M scheme is shown in Fig. 7. The grid used for the
P*M analysis is also indicated, with the particle located
in the middle of a cell. Results of the P*M algorithm for
two different cut-off ranges N, are provided. Clearly, within
the direct-interaction range the exact solution is obtained.
Errors arise outside of the PP-interaction cut-off due to
the finite-differences employed here. The results indicate
that, in order to keep this error below 1%, N, = 4 neighbors
should be included in the correction. If the velocity is com-
puted using exact differentiation in Fourier space, N, =3 is
sufficient (not shown).

4.3. Implementation issues

In this section we discuss a few issues regarding a flexible
and efficient implementation of the presented algorithm.
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Fig. 7. Induced velocity from a single particle in a 2D domain relative to
the exact solution using a Gaussian core of radius ¢ = %hx. Dashed lines
indicate the cell boundaries. Results are obtained using (—) direct PP
interaction; (---) PM (M}, kernel, 4th order finite differences); marked lines
with PM of different cut-off: (—o—) (N, = 1), (—+-) (N, = 3).

The method leaves complete freedom regarding the
treatment of immersed boundaries and their surface vortic-
ity. As discussed in Section 3.3 we employ a linear discret-
ization of the vortex sheet strength. This is incorporated in
the P°M algorithm by replacing each linear element by a
point vortex of the corresponding strength I'; = %(yj—l-
7,41)As;. These point vortices then form an approximation
of the sheets within the PM and influence matrix assign-
ment part. This ensures a sufficient representation of the
surface circulation in regions far away from the surface,
whereas the effect of the surface point vortices on near-field
particles is cancelled out and replaced by the near-field sub-
grid correction step. Any surface modelling can then be
applied in the PP step of the algorithm. Whilst herein a lin-
ear vortex sheet strength approximation is used, any other
approach would be equally possible.

With the influence matrix technique being based on the
vorticity projected from the particles to the grid nodes,
considerable time-savings can be accomplished by saving
the mesh-interpolated vorticity contribution of each cell
separately. This procedure requires the storage of M vortic-
ity values per node to distinguish the origin of the contribu-
tions. Subsequently, the respective elements of this matrix
can be accessed to construct the dw,, vector of Eq. (41).
Furthermore, the computed nodal velocity components of
the local influence-matrix prediction are stored and subse-
quently subtracted from the PM solution before a final
interpolation back to the particles. Thus, only one forward
and one backward interpolation is needed per particle.

Since the anisotropy of the flow fields is usually largest
close to the solid surface, this calls for a variable NV, if a uni-
form accuracy throughout the domain is sought. If one is
prepared to give up the use of symmetry for some interac-
tions within the PP part, the maximum value of N, (cf. Sec-
tion 4.2) would be used for cells in the proximity of the wall
only and then successively reduced according to some func-
tion of the distance of the cell from the solid boundary.
This significantly speeds up the procedure and is particu-
larly suited for the simulation of the wake flow.
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The P*M algorithm is furthermore used in the construc-
tion of the right-hand side of the boundary element equa-
tion. Eq. (22) requires the calculation of the residual
velocity on the surface induced by the free vortices. In
the naive implementation this operation is of O(N,N,).
However, to accomplish this efficiently, ghost particles
are introduced at the sampling points (panel centers).
These are no numerical elements but rather dummy parti-
cles representing required target points for the velocity
computation. Since the P*M algorithm can handle disjoint
source and target points, a call to the P*M routine by pass-
ing the ghost particles on will result in a strongly reduced
computation, because computations related to the velocity
target points (back-projection from mesh to particle and
particle-particle correction) are only performed for the
ghost particle locations.

It is important to note that, while herein we utilize Fast
Fourier Transforms for the solution of the Poisson equa-
tion, the proposed P*M algorithm does not require access
to Fourier space contrary to the classical P*M algorithm.
Therefore alternatively “black-box’ fast field solvers can
be used, which may be important for efficient paralleliza-
tion [65].

The current algorithm can be readily extended to
account for movements of the solid interface such as to per-
form simulations of Fluid-Structure Interaction (FSI)
problems [66]. Due to the disjoint nature of interface and
computational grid the solid surface can be allowed to dis-
place without the need for adjustments to the grid. The cur-
rent implementation has been used extensively to study FSI
problems, mainly in the field of bluff body aerodynamics
such as bridge aecrodynamics [67,68].

5. Particle remeshing

Herein we introduce a novel procedure for the re-initial-
ization of the particle locations. Such remeshing is neces-
sary for the convergence of the vortex method as
discussed in Section 3.4. It proceeds by replacing the irreg-
ularly spaced vortex elements by a new set of particles
located on a regularized lattice — the particle mesh. To this
end, the particle strengths I, are interpolated to the nodes
of the particle mesh using the particle-mesh interpolation
formula (27). These mesh nodes then form a new regular-
ized set of particles replacing the old. The moment conserv-
ing properties of the interpolation used in the remeshing
step are essential for preserving the dynamics of the flow.
Thus, we employ the third order M, (Eq. (28)) throughout.

Difficulties arise close to solid boundaries which require
not to assign vorticity inside the body. For diffusion models
which strictly require a regular particle layout, one-sided
kernels are usually used to perform the remeshing in the
vicinity of the surface. The random walk model used herein
however is less sensitive to the particle map as discussed
earlier. This robustness allows for a scheme where we do
not replace particles which would assign vorticity inside
the body. This yields a thin region along the surface in

Fig. 8. Schematic of the partial remeshing strategy: dots indicate the
particle mesh; particles in the shaded area are not being remeshed.

which the distorted vortex layout is conserved as depicted
in Fig. 8. Since this region usually contains a large number
of particles due to the vortex release algorithm, the overlap
of particle cores is ensured without remeshing. In the
remaining flow regions the redistribution ensures the over-
lap and thus a sufficient vorticity support.

For engineering applications, a method has also been
devised to take into account the reduced need for resolu-
tion in the far-field regions. There, the particle spacing
can be increased without significant loss of accuracy.
Hence, a zonal remeshing is used where the particle mesh
is successively coarsened away from the surface as shown
exemplary in Fig. 9 for the flow past a bridge deck [67].
The different particle meshes are laid out in zones ; and
can be placed independent as far as node location and
spacing are concerned. By definition a particle is remeshed
only to nodes of one particle mesh, applying this mesh’s
interpolation rule. Two adjacent zones Q; and Q1 will
have a certain overlap, the size of which depends on the
interpolation kernels. This overlap of the resulting particle
maps also ensures sufficient vorticity support without gaps
between the zones. Note, that the core radius must be
altered according to the different particle mesh spacings,
cf. also [69]. Interactions between vortex blobs with differ-
ent radii are based on the average radius. The zonal reme-
shing reduces the number of particles and proves useful in
adjusting the computational effort to the required numeri-
cal resolution.

Fig. 9. Sample particle map for a bridge deck study using zonal
remeshing.
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6. Results

In the following we demonstrate the convergence of the
proposed method by considering simple inviscid, steady
flow, and the impulsively started flow past a circular cylin-
der. To illustrate the ability of the method to handle com-
plex geometries we present a study of the impulsively
started flow past a cactus-like geometry.

6.1. Circular patch of vorticity

To study the convergence of the proposed P*M algo-
rithm we consider the velocity field induced by a circular
patch of vorticity under free-space boundary conditions.
To this end, the vorticity patch introduced by Perlman
[70] is used, thus the initial vorticity field is given by

o(x) = { (1-[xP) |xl <1, @)

0 |x| > 1.

For the PM component of the algorithm the third order M},
interpolation kernel and fourth order finite-differences are
used. The particle—particle correction term and the refer-
ence lej solution both employ the Gaussian kernel Eq. (17).

Assuming an inviscid flow, the vorticity distribution of
Eq. (43) results in a stationary flow. Thus, in this study
we only consider the spatial convergence of the algorithm
and compare the computed velocity field (vfM) with the
corresponding N; solution (v,‘jir). No time stepping or reme-
shing is performed. Different computational meshes are
employed, each covering a domain of [—1.2;1.2] in both
directions. The core radius is kept constant at ¢ = 0.005
throughout. The number of particles is kept constant at
four per grid cell. The particle field is initialized by placing
particles on a separate grid in order to discretize the vortic-
ity distribution of Eq. (43).

Fig. 10 shows the convergence of the L, error of the par-
ticle velocity

obtained using the hybrid PM and P*M algorithms. The
PM solution displays a third order convergence as expected
from a combination of third order interpolation and fourth
order finite differences. The simulations with the P°M algo-
rithm were obtained by increasing the number of neighbor-
ing cells as the mesh spacing decreases, thus keeping the
geometric size of the direct-interaction region constant.
The error is reduced with respect to the PM solution as a
result of the local particle-particle correction. The order
of convergence is approximately 5 for the case studied here,
but depends on the selection of N,.

The overall convergence rate of the current algorithm
will be subject to the combined effects of the different
sub-algorithms and due to the use of random walks lower
than that of the velocity computation shown above. How-

10—2
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Fig. 10. Convergence of the Ly-error of the particle velocities as compared
to the direct particle—particle interaction computation. The number of
particles per grid cell is kept constant. (—o—) PM prediction (M, kernel,
4th order finite differences); (—*—) P°M with N, such that the PP-
correction area remains constant.

ever, it is important for the overall performance to keep the
individual errors low. The P*M is thus of great importance.

6.2. Flow past an impulsively started circular cylinder
at Re = 3000

In this section validation studies for the case of an
impulsively started flow past a circular cylinder are pre-
sented. This problem is a standard benchmark in computa-
tional fluid dynamics. Thus, extensive high-resolution
studies have been carried out by Koumoutsakos and Leon-
ard [7] and Ploumhans and Winckelmans [12] presented
several extensions to the 2D vortex method also analyzing
this particular flow. For the purpose of this validation
study analyses at a Reynolds number Re = U, D/v of
3000 are performed. To show convergence we systemati-
cally refine the adjustable parameters of the method. More-
over, we investigate the behavior of the proposed partial
remeshing strategy.

A reference case is defined by the following parameters.
The surface of the cylinder is discretized by N; = 400 pan-
els, from which at most (N7**) 6 vortex particles are cre-
ated. The velocity field is computed using the P°M
algorithm with a grid resolution of 256 x 128 and fourth
order finite differences. The particle-particle correction
step is performed within four neighboring cells (N, = 4).
The projection steps all use the third order M) kernel. A
second-order Runge-Kutta scheme is applied for the time
integration of the convection step with a non-dimensional
time step of A" =Atr U,/As=0.5. A core radius of
a/As =1.2 is used throughout. All results of the conver-
gence study are shown in Fig. 11. Shown are the time
history of the drag coefficient filtered using a running
average with a window size of 10 time steps.

The reference solution is compared with previously
published studies [7,12,13]. In spite of the stochastic nature
of the method due to the use of random walks and hence
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Fig. 11. The spatial convergence of the drag coefficient for the impulsively started flow past a circular cylinder at Re = 3000. Top left: Present results,
reference case: (——); Previous results: (——) Koumoutsakos and Leonard [7], (———) Ploumhans and Winckelmans [12], (----) Ould-Salihi et al. [13]. Top
right: Variation of the number of boundary elements: (—) reference: N; = 400; (----) N; = 300;(—,-—) N;= 600. Bottom left: Variation of the maximum
number of particles released from a boundary element: (—) reference: Ny = 6; (----) Ni'*™* =4; (———) NI = 8. Bottom right: Variation of the
remeshing strategy: (—) reference: unremeshed; (----) remeshed h, = As/2; (———) remeshed /, = As/4. Present results are plotted after filtering.

formally low convergence rate, the present results are
found to be in excellent agreement with these previous
studies all employing the deterministic, second order PSE
scheme [29] for diffusion.

First we consider the spatial convergence by varying the
number of boundary panels (N, and the vortex creation
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Fig. 12. The time history of the drag coefficient for the impulsively started
flow past a 12 leaf cactus at Re=3000: (—) L/D =0.250 (12 leaves),
pressure drag; (=) L/D = 0.250 (12 leaves), total drag; (——) L/D = 0.000
(oo leaves), total drag.

parameter N7"**. The results obtained using 400 and 600
panels are indistinguishable, whereas the simulation using
300 panels displays some deviation toward the time of max-
imum drag. Similarly, values of N7** of 6 and 8 produce
virtually identical results whereas N7™* =4 results in an
insufficient particle resolution.
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Fig. 13. Impulsively started flow past cacti with different corrugation
depths at Re = 3000. The time history of the total drag coefficient: (—) L/
D =0.035 (24 leaves), (=) L/D=0.070 (24 leaves), (—) L/D = 0.000
(o0 leaves).
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Next, the partial remeshing strategy introduced in Sec-
tion 5 was tested using two different mesh resolutions and
the results compared with a solution obtained without
remeshing. The remeshing is performed at every time step
and no suppression of low-strength vortices is used. For
this particular flow configuration, and at early times
(tUs/D < 3.5) the unremeshed simulation appears to have
converged and is found to be in good agreement with the
partially remeshed solution with a mesh spacing (%,) of
As/4. The solution obtained using double the spacing
(As/2) results in sufficient resolution at early times but suf-
fers from deviations at later times (1U,./D > 1.5).

6.3. Impulsively started flow past a cactus-like geometry

The ability of cacti and other tall succulents to with-
stand high wind speeds has recently motivated experimen-
tal and numerical studies [71] of the aerodynamic behavior
of these structures. The corrugated surface of cavities and
spines was found to reduce the mean drag and the fluctuat-
ing side-force for a 24 leaf cactus with cavity depths (L/D)
as low as 0.035. The arrangement of the cavities and spines
of the Saguaro cactus (Cereus giganteus) are speculated to
have evolved in nature due to advantages in the process of
natural selection related to the aerodynamic forcing.

tUso/D = 0.37

tUse/D = 0.56

Fig. 14. Impulsively started flow past a 12 leaf cactus with L/D = 0.250 at Re = 3000. The snapshots show the velocity (top) and vorticity (middle) fields
and the surface pressure distribution (bottom) at the occurrence of the first two drag minima at times U,./D = 0.37 (left) and ¢U,./D = 0.56 (right). The
resulting drag is negative in both cases. The minima occur as the vortices in the cavities are convected to the downstream side of the cavity resulting in a

low local surface pressure.
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The present study involves the impulsively started flow
past three different surface geometries: two cacti with 24
leaves and cavity depths of 0.035 and 0.070, respectively,
and one cactus with 12 leaves and a cavity depth of
0.250. The simulations are performed at a Reynolds num-
ber of 3000, and conducted until a non-dimensional time
(tUs/D) of 2 with a time step of AtU,./D = 0.0015. The
number of boundary elements is chosen such as to obtain
panel lengths of approximately As/D = 0.002, correspond-
ing to 1680, 2160 and 2640 elements for the three cases.
Partial remeshing is used at every time step, with a particle
mesh resolution of /4, = As/2. The VIC mesh spacing is
h/h, = 4, resulting in a mesh size of (1024, 512) at the end
of the simulation. The range of local particle—particle cor-
rection is N, = 4. This high resolution was found to be nec-
essary in a convergence study which involved a successive
refinement of the spatial and temporal parameters. All sim-
ulations involved roughly one million particles at
completion.

The time history of the drag force obtained for the 12
leaf cactus is shown in Fig. 12. For comparison the drag
force on a circular cylinder is also shown. Both the pressure
and total drag are displayed revealing a negligible viscous
drag term. Fig. 13 shows the total drag force time history
for the remaining surface configurations. At early times
(tUs/D <0.1) the corrugated cylinders exhibit a marked
increase in the drag of 1.8, 3.6 and 5.8 compared to a value
of approximately 1.0 for the circular cylinder. This
increased initial drag is caused by the formation of the vor-
tices at the tip of the spines. As these vortices detach the
drag decreases and reaches a minimum when the vortices
touch the adjacent downstream spine. The low surface
pressure in the vicinity of the vortices is responsible for
the observed negative drag. As the vortices diffuse, or are
being convected out of the cavity, the drag recovers to a
value in close agreement with that of a circular cylinder.
The 12 leaf case however experiences a second drag
minimum as the vortices in the upstream pointing cavities
touch their downstream spine wall at approximately
tU../D = 0.56. Flow visualization and the surface pressure
distribution at these minima are shown in Fig. 14. The vor-
ticity field is here computed using Eq. (15) evaluated on a
1000 x 1000 mesh.

g

— ey

Fig. 15. Impulsively started flow past a 12 leaf cactus with L/D = 0.250
(Re = 3000), snapshots of the particle map: :U,./D = 0.5, 1.0, 1.5 and 2.0
(a—d).

Fig. 16. Impulsively started flow past a circular cylinder with L/D = 0.000
(Re = 3000), snapshots of the particle map: tU,./D = 0.5, 1.0, 1.5 and 2.0
(a—d).

Fig. 17. Impulsively started flow past a 24 leaf cactus with L/D = 0.035
(Re = 3000), snapshots of the particle map: tU,./D = 0.5, 1.0, 1.5 and 2.0
(a—d).

Fig. 18. Impulsively started flow past a 24 leaf cactus with L/D = 0.070
(Re = 3000), snapshots of the particle map: tU,./D = 0.5, 1.0, 1.5 and 2.0
(a—d).

Particle maps for the three different cases at different
instances in time are shown in Figs. 15-18. For these plots
a threshold on the particle strength has been introduced,
resulting in approximately 20% of the particles being
shown.

Saguaros reach reproductive maturity after 30-50 years
only. Resistance against rare and strong wind gusts is a
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natural selection criterion. The present study thus suggests,
that their shape has evolved due to the favorable aerody-
namic behavior.

7. Conclusions

An immersed interface P*M algorithm has been pre-
sented for the simulation of two-dimensional bluff body
flows. The Particle-Mesh (PM) step of the algorithm
extends the classical Vortex-In-Cell algorithm by employ-
ing a novel influence matrix technique to cancel the aniso-
tropic sub-grid scales introduced by the presence of the
immersed interface. The subsequent Particle-Particle (PP)
step involves an exact particle—particle correction term.
The P*M algorithm furthermore allows to disjoin the mesh
and particle resolution by explicitly resolving sub-grid
scales on the particles.

The random walk technique is used to model diffusion
and allows for a partial remeshing strategy in which parti-
cles in close proximity of solid boundaries are not
remeshed. This leads to a robust diffusion model which
ensures the convergence of the method. The choice of ran-
dom walks however is independent of the P°M velocity
computation algorithm.

The simulations of the impulsively started flow past a
circular cylinder at a Reynolds number of 3000 demon-
strated the convergence of the proposed methodology.
The predicted drag time history was found to be in good
agreement with previous simulations. The flow past a cac-
tus-like geometry was conducted to demonstrate the ability
of the method to handle complex geometries. The simula-
tions revealed a momentary negative drag for cavity depths
of L/D =0.070 and 0.250, respectively.
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