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a b s t r a c t

We present a multiscale algorithm that couples coarse grained molecular dynamics
(CGMD) with continuum solver. The coupling requires the imposition of non-periodic
boundary conditions on the coarse grained Molecular Dynamics which, when not properly
enforced, may result in spurious fluctuations of the material properties of the system
represented by CGMD. In this paper we extend a control algorithm originally developed for
atomistic simulations [3], to conduct simulations involving coarse grainedwatermolecules
without periodic boundary conditions. We demonstrate the applicability of our method
in simulating more complex systems by performing a non-periodic Molecular Dynamics
simulation of a DPPC lipid in liquid coarse grained water.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Interfaces between biomembranes and water are significant components of living cells because biological processes,
such as ion exchange and neural signal transmission, take place in the proximity of these interfaces. Understanding
their structural characteristics and their dependence on surrounding biomolecules and nanoscale flows will be the key
to emerging fields such as single-molecule medicine and nanotechnology based medical applications. Studying relevant
systems is usually hindered by their complexity. All-atom models are computationally expensive, therefore coarse grained
models have been proposed [1] to access larger length and time scales. However, these coarse grained models are subject
to periodic boundary conditions (BCs). Non-periodic BCs are often more appropriate in cases where the nanoscale domain
interfaces a microscale flow or in cases where biomolecules are transported electrophoretically through membranes [2].
An approach is thus needed to couple mesoscopic descriptions to continuum ones. This coupling is achieved by using the
control algorithmdeveloped by Kotsalis et al. [3] and shows its applicability for liquidwater in its coarse grained description.

2. Methodology

The atomistic region is described byMolecular Dynamics (MD) simulations subject to non-periodic boundary conditions.
The position ri = (xi, yi, zi) and velocities vi = (ui, vi, wi) of the ith particle evolve according to Newton’s equation of
motion:

d
dt

ri = vi(t)
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mi
d
dt

vi = Fi = −
∑
j6=i

∇U(rij),

where mi is the mass and Fi the force on particle i. The interaction potential U(rij)models the physics of the system. In the
case of pure bulk coarse grained water (CGW) we consider:

U(rij) = U12–6(rij)+ Um(rw),

where U12–6 is the 12–6 Lennard–Jones (LJ) potential:

U12–6(rij) = 4ε
[(
σ

rij

)12
−

(
σ

rij

)6]
, (1)

and rij denotes the distance between the i and j atom, and σ and ε are the length and energy scales of the LJ potential (for
CGW: ε = 5.0 kJ mol−1 and σ = 0.47 nm [1]). The term Um(rw) accounts for the interaction of the mesoscopic region
with the surrounding continuummedium. It depends on the distance to the outer boundary of the atomistic domain rw [5].
In hybrid algorithms, the elimination of periodic boundary conditions in the atomistic domain hampers the maintenance
of a uniform density across the domain. The potential Um replaces the missing interactions for the particles close to the
mesoscopic–continuum interface. The equations of motion are integrated using the leap-frog scheme with a time step of
20 fs.

3. Results

3.1. Coarse grained water

We examine the validity of the method for the case of water, namely (T = 300 K , ρ = 1.0 g cm−3). The size of the
computational domain is 5 nm × 5 nm × 5 nm. The periodicity is broken only in the x direction. The system is weakly
coupled to a Berendsen thermostat [4] with a time constant of 0.1 ps. All the potentials are truncated smoothly after a cutoff
rc of 1.2 nm [1].
In this paper we apply the method proposed by Kotsalis et al. [3]. We develop a mean external boundary force using a

control algorithm tominimize the density perturbations in theMD system subject to non-periodic BCs. The control approach
is sketched in Fig. 1. An iteration progresses as follows: we start by applying no external boundary force. Then we measure
the density in short time intervals filtering away the noise. This improves the convergence of themethod andmakes it more
suitable for coupling the mesoscopic to the continuum description. The density ρm

′

is measured with a spatial resolution δx
of 0.04 nm in time intervals of 4 ps and processed twice through a Gaussian filter. We then obtain ρm as:

ρm
′′

(x) =
1
ε

∫
ρm
′

(x) exp
(
−
(x− y)2

ε2

)
dy

ρm(x) =
1
ε

∫
ρm
′′

(x) exp
(
−
(x− y)2

ε2

)
dy

where ε = 2δx. The cutoff used for the discrete evaluation of the convolution is 3δx and the filter can be expressed in the
following discrete form:

ρm
′′

i =


ρm
′

i for i = 1 or i = N
0.3045ρm

′

i±1 + 0.3910ρ
m′
i for i = 2 or i = N − 1

0.1117ρm
′

i±2 + 0.2365ρ
m′
i±1 + 0.3036ρ

m′
i for i = 3 or i = N − 2

0.0301ρm
′

i±3 + 0.1050ρ
m′
i±2 + 0.2223ρ

m′
i±1 + 0.2854ρ

m′
i for 4 ≤ i ≤ N − 3

where N is the number of the measured density values.
We then evaluate the error as:

e(rw) = ρt − ρm(rw), (2)

where rw is the distance to the boundary, ρt the desired constant target density and ρm the measured filtered value. We
compute the gradient of this error as ε(rw) = ∇e(rw) = −∇ρm(rw) and amplify this with a factor K Pi to obtain the
adjustment∆F to the boundary force as:

∆Fi = K Pi εi,

for each ith bin, where K P(rw) = kp
√
(rc − rw). We let K P depend on the distance from the wall because the magnitude of

the density disturbances reduce as the distance increases. The boundary force is finally computed as:

Fnewi = F oldi +∆Fi.
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Fig. 1. Sketch of the control algorithm.
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Fig. 2. Top: The resulting external boundary force after applying the control algorithm for a system of bulk liquid CGW at the state point (T = 300 K, ρ =
1.0 g cm−3). Bottom: The controlled density profile (- - -). The value used for kp is 2.0

nm2.5 kJ
amu mol and both the force and density have been sampled over 0.6 ns.

The method has converged [3] approximately after 0.8 ns for a kp of 2.0
nm2.5 kJ
amu mol as shown in Fig. 2. The control algorithm

eliminates the density disturbances not only close to the boundary but additionally prevents its propagation into the interior
of the domain. When periodic boundary conditions are applied, the correspondence between the volume of the domain
and the pressure is simple. The density oscillation though due to the incomplete introduction of non-periodic boundary
conditions can ruin this relation as it leads to non-bulk properties close to the mesoscopic–continuum interface that could
also propagate inside the domain (see Fig. 2). It is therefore more systematic to accomplish the bulk properties on the
boundaries accurately when applying non-periodic boundary conditions and avoiding in this way buffer regions [3].

3.2. Validation for the system of lipid bilayer in water

The system (cf. Fig. 3) consists of 26250 CGwater particles (corresponding to 26 250×4 = 105 000molecules), and 1250
dipalmitoyl phosphatidylcholine (DPPC)molecules.We performed CGMD simulations based on theMARTINI force field. The
details on the potential parameters are described in [1]. One CG particle for water correspond to 4 water molecules. One CG
DPPC molecular model consists of 12 CG particles, two hydrophilic ones with positive and negative charges, two glycerol
ester particles and two hydrophobic chains, each consisting of four CG particles. The system is equilibrated in NPT ensemble
using periodic boundary conditions in advance. Here, the Berendsen barostat is applied only in the x direction, i.e., the
direction of the membrane thickness. The unit domain lengths in the y and z directions are constant both at 20nm. The
resultant system domain configuration is 12× 20× 20 nm. The CGW is at the state point (T = 323 K and ρ = 0.97 g cm−3)
in order to be consistent with the simulations presented in [1]. The periodicity is broken in the x direction.

The value of kp was 4.0
nm2.5 kJ
amu mol and the control force was updated every 4 ps. In Fig. 4 we show the external boundary

force in the controlled and uncontrolled (no external boundary force) cases and the resulting density profiles. After 0.3 ns
the method has converged, the controller successfully eliminates the deviations from the target density value and prevents
propagation of the oscillation into the interior of the domain.
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Fig. 3. The DPPC lipid surrounded by CGW.
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Fig. 4. Here we show the results for the system of the DPPC lipid surrounded by CGW. Left: Zero external boundary force and the resulting one after
applying the control algorithm at the state point (T = 323 K, ρ = 1 g cm−3). Right: The corresponding uncontrolled (—) and controlled density values
(- - -). The value used for kp is 4.0

nm2.5 kJ
amu mol and both the force and density have been sampled over 0.4 ns.

4. Conclusions

In summary, we have applied a control algorithm [3] to eliminate density fluctuations when conducting non-periodic
CGMD simulations of mesoscopic systems. The algorithm is validated for pure CGW at T = 300 K at rest and in non-
periodic simulations of a DPPC lipid in CGW at T = 323 K. The controller eliminates the density perturbations close to
the boundary while preserving the structural characteristics of the lipid. The results presented herein demonstrate that the
use of the control algorithm seamlessly integrates CGMD and continuum description of complex systems. Current work
involves extensive multiscale simulations involving water, fullerenes and lipid bilayers.

References

[1] S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, TheMARTINI force field: Coarse grainedmodel for biomolecular simulations, J. Phys.
Chem. B 111 (27) (2007) 7812–7824.

[2] U. Zimmerli, P. Koumoutsakos, Simulations of electrophoretic RNA transport through transmembrane carbon nanotubes, Biophys. J. 94 (7) (2008)
2546–2557.

[3] E.M. Kotsalis, J.H. Walther, P. Koumoutsakos, Control of density fluctuations in atomistic-continuum simulations of dense liquids, Phys. Rev. E 76 (1)
(2007) 016709.

[4] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Dinola, J.R. Haak, Molecular-dynamics with coupling to an external bath, J. Chem. Phys. 81 (8)
(1984) 3684–3690.

[5] T. Werder, J.H. Walther, P. Koumoutsakos, Hybrid atomistic-continuum method for the simulation of dense fluid flows, J. Chem. Phys. 205 (2005)
373–390.


