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ABSTRACT

We investigate the fluid-solid interaction problem of the motion of thin solid bodies in high-Re
non-turbulent flows. A reduced-order two-dimensional model is proposed for the fluid motion using
potential flow theory. Point vortices with monotonically increasing intensity are shed from the sharp
edges of the solid to enforce the regularity condition on the flow. Several applications are presented
from the analysis of biological locomotion in fluids to the study of falling cards or flapping flags.

The interaction between the motion of a solid body and the surrounding fluid is an essential
element for non-terrestrial animal locomotion: insects or fishes flap their wings or fins to create
around them a highly unsteady flow able to generate the lift and thrust forces necessary to move
or hover in the air or water. This interaction is also responsible for the chaotic-looking motion of
a falling paper card in the air or the flapping of flags in strong winds. The full numerical solution
of the coupled solid-body motion is computationally expensive as it requires solving a system of
partial differential equations (the Navier–Stokes equation) coupled on the moving boundaries to
a system of ordinary or partial differential equations (Newton’s law or internal solid dynamics).
Proposing simplified numerical and physical models for this complex problem is a challenging and
ongoing research topic.

The applications mentioned above are characterized by slender solid profiles and high Reynolds
number Re. The effect of viscosity is concentrated in thin boundary layers that separate in free shear
layers due to the unsteady motion of the trailing edge relative to the fluid, and roll-up into strong
vortices. We focus here on two-dimensional problems without separation and choose to represent
the fluid motion using potential flow theory. The vortex formation is represented by the shedding
of point vortices with monotonically increasing intensity. The intensity of these vortices is adjusted
at all time to satisfy the regularity of the flow at the solid body edges, and their velocity is given
by the Brown–Michael equation that conserves the fluid momentum in an integral sense around the
vortex and the branch cut linking it to the generating corner. The flow is entirely determined by
the vortex properties (intensity and position) and the solid velocity, and the pressure at the surface
of the body can be computed using complex analysis. We focus here on thin solid bodies, using
conformal mapping or a bound vortex sheet representation for respectively rigid and flexible bodies.

In a first step, the kinematics of the solid is prescribed and the resulting pressure forces are
computed. Qualitative and quantitative physical insights are obtained on biological locomotion
in fluids using simple rigid or flexible flapping schemes: structure of the wake and drag/thrust
transition, efficiency of the flapping,... (see Figure 1). The low computational cost of this method
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and its ability to capture the main physical characteristics of the problem makes it particularly
well-suited for optimization problems (of the solid kinematics for example) for which the cost of full
numerical simulation is prohibitive.

In a second step, introducing the solid dynamics (as well as its internal response for flexible
objects), the fluid and solid problems are coupled, and the effect of an outside forcing on the
coupled system is studied: fall of a rigid plate under the influence of gravity (see Figure 2), flapping
of a flexible flag under the influence of the wind.
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Figure 1: Drag/Thrust and propulsion efficiency of a wavelike flexible flapping scheme. vφ is the
wave-speed. (a) The flow at infinity U∞ and the flapping motion are prescribed, unsteady point
vortices are shed from the trailing edge. (b) Influence of the flapping amplitude and frequency
on the horizontal force. Red zones correspond to drag and blue zones to thrust. (c) Locomotion
efficiency (ratio of the available thrust to the energy input P).
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Figure 2: Trajectory of a falling rigid plate with inertia ratio Fr = M/2ρl2 = 0.7 released with
an angle θ0 with the horizontal, obtained using the unsteady point vortex method. The vortex
shedding destabilizes the position θ = 0 and a transition to large scale fluttering or tumbling
regimes is observed.
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