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Several problems related to the dynamics of vortex patterns as observed in
wake flows are addressed. These include: The universal Strouhal-Reynolds
number relation. The Hamiltonian dynamics of point vortices in a periodic
strip, both the classical two-vortices-in-a-strip problem, which gives the struc-
ture and self-induced velocity of the traditional vortex street, and the three-
vortices-in-a-strip problem, which is argued to be relevant to the wake behind
an oscillating body. The bifurcation diagram for wake structure found exper-
imentally by Williamson and Roshko is addressed theoretically.

1 Introduction

Vortex street wakes are ubiquitous. We can create them in the laboratory and
we observe them in Nature. We see them in planetary atmospheres. Thus, in
recent years spectacular vortex street wakes at very high Reynolds number
have been observed “behind” certain islands in satellite images (cf. Fig. 1).
We realize their profound effect from instances such as the collapse of the
Tacoma Narrows Bridge on November 7, 1940.

While the phenomenon of vortex streets had been observed qualitatively
for many years, it was not until the seminal work of T. von Kármán in 1911-12
[13, 14, 15] that the first theory of these structures was produced. So impor-
tant was this contribution of von Kármán that the Hungarian postage stamp
commemorating him (issued in 1992) shows his portrait on a background of
the streamline pattern (in the co-translating frame) of the particular staggered
vortex street that he identified as being not linearly unstable (see Fig.2). I
shall return to von Kármán’s contributions in Section 4. Let me first mention
another very important result that has emerged, mostly from experiment,
namely the well known relation between the Strouhal number for vortex shed-
ding into the wake and the Reynolds number of the wake-generating flow (see
Fig.3). Let us first ask: How might one think about such a relation theoreti-
cally?



2 Hassan Aref

Fig. 1. NASA satellite image of 26 April 2002 showing a well-developed vortex
street behind Madeira island.

2 The Strouhal-Reynolds number relation

Empirically one finds that the Strouhal number, which is the non-dimensional
shedding frequency, depends on the Reynolds number of the wake-producing
flow as

St = 0.2175− 5.1064
Re

, (1)

for the “laminar” regime (regime I in Fig.3; up to Re ≈ 200), and by

St = 0.212− 2.7
Re

, (2)

for large values of Re, say 400 and higher. The latter fit includes the famous
limiting value (0.212) of the Strouhal number at high Reynolds number. Of
course in this second regime (regime II in Fig.3) the flow does not just respond
with one frequency but the Strouhal number corresponds to the frequency with
most of the energy.

There is a “transition” regime (regime III in Fig.3) where the curve seems
to break. This regime is related to three-dimensional vortex motion in the
wake. I shall not have anything to say about this regime in this paper.

We have approached this problem in the following way: First, we recall
that the Navier-Stokes equations only give us that St is a function of Re,
i.e., that there must exist some functional relation St = f(Re) where f is
(somehow) to be determined from the equations of motion and the shape of
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the body. Second, we assume – based on an analogy to the phenomenology
of phase transitions or general ideas from bifurcation theory – that close to
the bifurcation the Strouhal number depends as a power law on the deviation
of 1/Re from its “critical” value at the bifurcation, i.e., we should expect for
Re ≈ Recrit that

St = A

(
1

Recrit
− 1

Re

)α

, (3)

where Recrit is the bifurcation Reynolds number (which is non-universal), A is
a non-universal coefficient, but α is a universal exponent. Experiment further
suggests that α = 1 which points to a mean-field theory of the phenomenon.

Fig. 2. Hungarian postage stamp memorializing von Kármán. In the background
the streamline pattern for a staggered point vortex street.

So, what equation should one try to apply a “mean-field analysis” to? We
[24] thought the two-dimensional vorticity equation,

∂ζ

∂t
+ V · ∇ζ = ν∇2ζ, (4)

was a natural candidate. In the paper just cited we estimate the terms in this
equation as follows:

∂ζ

∂t
≈ f∆ζ, V · ∇ζ ≈ U

∆ζ

d
, ν∇2ζ ≈ ν

∆ζ

d2
. (5)

Here f is the shedding frequency, which sets a natural time scale for the flow,
U is the free stream velocity and d the diameter of the cylinder. The quantity
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∆ζ gives the scale of vorticity fluctuations in the emerging wake. There are
points of large vorticity, primarily in the vortices that are forming to make
up the vortex street, and there are points of smaller vorticity in sheets and
other “background” flow structures that will ultimately be swept up into the
vortices.

In our paper [24] we argue, based on careful examination of the vortex wake
formation process in a numerical simulation [26], that the viscous term acts
exclusively to spread out and impede vortex formation, i.e., in the vorticity
balance in the near wake this term should be viewed as a sink when writing
the vorticity balance. We also argue that part of the advective term on the
right hand side acts to assemble the vortices (the rest simply advects the
vorticity downstream). This is a source term for vortex generation and should
enter the vorticity balance with a positive sign. Based on this kind of order
of magnitude estimates and physical reasoning to determine the signs of the
various contributions, we recast the vorticity equation in the following form
(in terms of orders of magnitude with signs):

f∆ζ = kaU
∆ζ

d
− kdν

∆ζ

d2
, (6)

where ka and kd are two dimensionless parameters that require a more com-
prehensive analysis to determine. It is easily seen that this relation, after
cancellation of ∆ζ from all terms and multiplication by d/U , is precisely of
the form of the empirical Strouhal-Reynolds number relation.

There are a number of questions one can ask of this simple “derivation”,
e.g., whether it is satisfactory that ∆ζ cancels out of all the terms1. In partic-
ular, the crude estimate for the advective term may seem dubious. We will not
enter into a discussion of these issues here (for more detail see the paper cited)
but simply state the suggestion that the correct and fully rigorous approach
to this problem requires finding a similarity solution of the vorticity equation
that, somehow, applies to vortex shedding. We leave this as a challenge to the
reader!

3 Hamiltonian dynamics of point vortex dynamics

The point vortex model originated with Helmholtz’s seminal 1858 paper on
vortex dynamics [17]. The most elegant statement arises if one concatenates
the x- and y-coordinates of the vortices into complex positions zα = xα +iyα,
α = 1, 2, ..., N . Then the equations of motion take the form

ż∗α =
1

2πi

N∑
β=1

′ Γβ

zα − zβ
. (7)

1 I am indebted to T. Bohr for raising this point.
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Fig. 3. The empirical Strouhal-Reynolds number relation for flow behind a cylinder.
Different symbols have been used for different vortex shedding regimes abbreviated
L3, TrW1, etc. The overall division into three regimes, I, II and III, is described in
the text.

Here the Γβ are the circulations of the vortices, invariant in time by Helmholtz’s
theory – even better, maybe, by Kelvin’s circulation theorem – the asterisk on
the left hand side denotes complex conjugation, the dot differentiation with
respect to time, and the prime on the summation symbol reminds us to skip
the singular term β = α.

Helmholtz gave the solution of the two-vortex problem, where he showed
that two vortices would have orbits on concentric circles, which in the special
case of a vortex pair degenerate to translation along parallel lines.

A major formal development of the theory was provided by Kirchhoff [18],
who in his lectures on theoretical physics, published in several editions starting
in 1876, showed that the point vortex equations could be recast in Hamilton’s
canonical form:

Γαẋα =
∂H

∂yα
, Γαẏα = − ∂H

∂xα
, (8)

where the Hamiltonian, H, is

H = − 1
4π

N∑
α,β=1

′ΓαΓβ log |zα − zβ |. (9)
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Again we exclude the singular terms α = β and remind ourselves to do so by
placing a prime on the summation. A complete correspondence with Hamil-
ton’s form of the equations of motion is obtained by choosing the generalized
coordinates to be qα = xα and the generalized momenta to be pα = Γαyα.
This also shows that for vortices phase space is configuration space, a feature
that has profound consequences for both the statistical physics of point vor-
tices and for the phenomenon of chaotic advection [2]. Many of these aspects
were covered by other speakers at the symposium.

The Hamiltonian nature of the point vortex equations immediately leads
to important insights about the availability of integrals of the motion and, in
turn, about integrability of the N -vortex problem. Thus, the invariance of H
to translation and rotation of coordinates, and its independence of time, leads
to the integrals X, Y and I given by

X + iY =
N∑

α=1

Γαzα, I =
N∑

α=1

Γα|zα|2, (10)

and, of course, H itself. The quantities X and Y are the two components of
the linear impulse. The quantity I is the angular impulse.

Pursuing the formalism of classical dynamics a bit further, we introduce
the Poisson bracket

[f, g] =
N∑

α=1

1
Γα

(
∂f

∂xα

∂g

∂yα
− ∂f

∂yα

∂g

∂xα

)
. (11)

The fundamental brackets may be written

[zα, zβ ] = 0, [zα, z∗β ] = − 2i
Γα

δαβ . (12)

We now obtain the key results

[X, Y ] =
N∑

α=1

Γα, [X.I] = 2Y, [Y, I] = −2X, (13)

from which the very important result

[X2 + Y 2, I] = 2X[X, I] + 2Y [Y, I] = 0 (14)

follows. These results show (a) that no new integrals arise by taking Poisson
bracket of the known integrals, and (b) that the problem always has three
independent integrals in involution, namely X2 + Y 2, I and H.

Poincaré realized as much in his lectures of 1891-92 [23] and concluded
(from what we today call Liouville’s theorem) that the three-vortex problem
on the unbounded plane is always integrable. Apparently this was not of
sufficient interest to him and he never returned to the problem. The general
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formalism given above was pursued by the Italian E. Laura in a number of
papers early in the 20th century [20] but then lay dormant for decades.

Actually some 15 years before Poincaré’s work the three-vortex problem
had been completely solved by a young Swiss mathematician W. Gröbli whose
1877 thesis [12] was for some reason overlooked2 for about a century. Even
the revival of Gröbli’s work in an important paper [31] by J. L. Synge for the
inaugural issue of the Canadian Journal of Mathematics in 1949, an issue that
contained a seminal paper in general relativity by Einstein and Infeld, failed
to introduce the solution of this three-body problem into the mainstream of
fluid mechanics. For a review of this history see [5].

It turns out that there is a bit of a “hole” in the treatments of Gröbli
and the later work by Synge, Novikov and the author [31, 22, 1] concerning
the special case Γ1 + Γ2 + Γ3 = 0. While being covered in principle by the
general analysis, it admits of a much more complete discussion. This was
provided by Rott [28] and the author [3]. In essence what our treatment of
the problem shows is that the relative separation of two of the vortices, say
vortices 1 and 2, i.e., Z = z1 − z2, evolves as if it were the position of a
fictitious passive particle in the field of three fixed vortices. The strengths and
locations of the three fixed vortices are given by the strengths of the original
three vortices and the linear impulse of the original three-vortex system. Thus,
if the original three vortices have strengths Γ1, Γ2, Γ3, the three fixed vortices
in the advection problem have strengths Γ−1

1 , Γ−1
2 , Γ−1

3 . (All that matters
is really the proportion of the vortex strengths – the absolute value can be
absorbed in a rescaling of space and time.)

This reduction of the problem – from three points corresponding to the
three original vortices, to one point corresponding to an advected particle – is
somewhat akin to what happens in the Kepler problem of celestial mechanics,
where the motion of two interacting mass points is decomposed into a trivial
center-of-mass motion and a relative motion. It leads to the following scenario:
There is the physical plane where the motion of the three vortices takes place,
i.e., the vortex positions z1, z2, z3 “live” in this plane. There is a phase plane
where the advection of the fictitious particle takes place, i.e., Z evolves in this
plane.

For three vortices on the infinite plane the advection problem in the phase
plane is relatively simple. There are four distinct regimes of motion. Three
of these arise in the obvious way through two of the vortices being closer to
one another than to the third vortex, and hence moving as if in a “bound
state”. The fourth regime corresponds to truly “collective states” where all
three vortices interact continuously.
2 This happened in spite of references to it in Kirchhoff’s lectures (2nd ed.) [18]

and in Lamb’s well known text [19].
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4 Point vortex modeling of wakes

It turns out that the solution method for three vortices on the infinite plane
can be extended to the problem of three vortices in a domain with periodic
boundary conditions as was first shown by Aref & Stremler [6, 30]. In the
case of vortices in a periodic strip, which is the case that is most immediately
applicable to vortex wakes, one has to stipulate that Γ1 + Γ2 + Γ3 = 0 just as
on the infinite plane. (In the case of vortices in a periodic parallelogram the
periodicity of the flow assures that the sum of the “base” vortices in the basic
parallelogram is zero.) The equations of motion for vortices in a periodic strip
of width L are

ż∗α =
1

2Li

N∑
β=1

′Γβ cot
[π

L
(zα − zβ)

]
. (15)

These equations appear first to have been written down in 1928 by Friedmann
& Poloubarinova [11]. See also [27].

With the wisdom of hindsight one may say that von Kármán’s theory of the
structure of the vortex street follows from (15) with N = 2 and Γ1 = −Γ2 = Γ
and, thanks to later work by Domm [10], his theory of the stability of vortex
streets follows almost entirely, although not quite, from (15) with N = 4 and
Γ1 = Γ2 = −Γ3 = −Γ4 = Γ . (Probably the most accessible account of von
Kármán’s theory for the modern reader is the exposition in [19].)

In brief, von Kármán’s theory of the vortex street shows, first, that the only
two-vortex-per-strip configurations to propagate downstream are the symmet-
ric and the staggered configuration. From the two-vortex version of (15) one
easily deduces that a ±Γ pair in a periodic strip propagates with velocity

U − iV =
Γ

2Li
cot

[π

L
(z+ − z−)

]
. (16)

For the velocity to be real, i.e., in order to have V = 0 in (16), the cotangent
must be pure imaginary. This implies <(z+ − z−) = 0 or <(z+ − z−) = L/2.
The first possibility corresponds to symmetric vortex streets, the second to
staggered vortex streets.

Von Kármán next considered the stability of these two types of configura-
tions. He did, in essence, two stability calculations, in both cases working with
infinite rows of vortices. In the first he simply perturbed one vortex keeping
all the others fixed. This calculation showed that the symmetric configuration
was always linearly unstable and the staggered configuration was linearly un-
stable unless the ratio of b = =(z+−z−) and the inter-vortex distance in each
row, h, has a certain value. (To avoid confusion we use a new symbol, h, for
the distance between vortices in either row because for, say, four-vortices-in-
a-strip the period of the strip, L, is related to the inter-vortex distance by
L = 2h, whereas L = h for the two-vortices-per-strip case.) In fact, in his
first attempt von Kármán produced the erroneous result sinh(πb/h) =

√
2.

(The reason for this “error” is that when perturbing just one vortex one is
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adding linear momentum and kinetic energy to the system being perturbed.
The appropriate criterion arises from perturbations that do not add linear
momentum or energy.) The correct result, which von Kármán quickly pro-
duced as well, and which is today known as his famous stability criterion for
vortex streets is

sinh
πb

h
= 1. (17)

The main thrust of our work on more complicated vortex wakes – we have
used the term “exotic” – is to apply the solution for three-vortices-in-a-strip
that we have found to model these in the same spirit that von Kármán modeled
steady vortex streets by the two-vortices-in-a-strip solutions. An example of
an “exotic” wake with three vortices shed per cycle is show in Fig.4. It is a
tenet of vortex wake dynamics, apparently true but difficult to prove, that the
total circulation of all vortices shed during one cycle is zero. This applies also
to such cases as a cylinder oscillating normally to an oncoming uniform flow.

A recent paper by Ponta, Stremler and the author [4] gives a rather thor-
ough exposition of our ideas so we shall be content with a brief summary
here.

In the extension of the solution for three vortices with sum of circulations
equal to zero to periodic boundary conditions [6, 30] one finds, once again,
that the problem can be “reduced” to an advection problem for the relative
position of two of the vortices, say again Z = z1− z2. This time, however, the
advecting system of vortices consists of three rows of advecting vortices, not
just three vortices. The vortices in each of the three rows are identical, and
their circulations are, respectively, Γ−1

1 , Γ−1
2 , Γ−1

3 (modulo rescaling of the
time). Indeed, the position of the “base vortex” in each row is given exactly as
in the unbounded plane case in terms of the linear impulse of the system and
the circulations. It turns out that if the ratio of the circulations is rational
(and because the sum is zero, if the ratio of two circulations is rational, the
ratio of any two circulations is rational), the three rows of advecting vortices
fit into a periodic strip with a width that is a multiple of the period L of
the strip in the physical plane. If the ratios are irrational, the three rows of
advecting vortices have no common period and we are faced with advection
by an infinite system of stationary vortices.

Again an advection problem in the phase plane arises but this time with
a more complicated structure of the various regimes of motion than in the
unbounded plane case. There are, in general, many more regimes for Z to
wander through and thus many more regimes for the vortex motion itself. (To
find z1, z2 and z3 from Z requires an additional quadrature.) This provides the
first qualitative conclusion: Vortex wakes with three (and, thus, presumably
with more than three) vortices shed per cycle provide a considerably richer
variety of wake patterns than the classical vortex street wakes (and we include
under this rubric both the von Kármán street and its oblique “cousins” found
subsequently by Dolaptschiew and Maue, cf.[21]). Furthermore, so far as we
can tell, the richness in the dynamical structure of the three-vortices-in-a-strip
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Fig. 4. ”Exotic” vortex street wake behind an oscillating cylinder (courtesy of C.
H. K. Williamson).

solution is only partially reflected in the known experimental results. The
phase plane diagrams reveal, for example, a multitude of relative equilibria
with three vortices per period, none of which have been observed. Somewhat
surprisingly, these can be determined analytically [29]. They are all linearly
unstable (since they correspond to saddle points in the phase plane diagram),
which may explain why they do not occur (or do not seem to occur) even
as transients in experimental images of vortex wakes. However, a thorough
analysis of such images has yet to be undertaken, and we have only recently
understood what to look for.

We also believe that it is possible to generalize the Kármán drag law, that
was derived for the ordinary vortex street [15], to a certain class of more
complicated vortex wakes. Work is in progress on this topic. Experimental
results suggest considerable richness in the structure of the drag force versus
the frequency of oscillation of the cylinder. It would be interesting to produce
such results using the simple wake models considered here.

5 Bifurcation diagram for vortex wakes

A persistent problem in relating the analytical solutions to real wake experi-
ments is the difference in control that one has over initial vorticity distribu-
tions in experiment versus theory. In the theory the locations and circulations
of a set of vortices is given as an initial condition. In experiment these data
arise through a complex process of boundary layer instability, vortex sheet
roll-up, and vortex formation. We often refer to this process simply as “vortex
shedding”, although the wake vortices are typically not “shed” ready-made for
assembly into a wake. The process is considerably more intricate and involves
several stages.

The controls that the experimenter has are such things as amplitude and
frequency of oscillation of the wake-producing cylinder, the shape of the cylin-
der, and the velocity of the oncoming free stream. How to “map” these controls
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onto the nature of the resulting wake is at present still something of an art.
The most reliable guide we have in this realm is the bifurcation diagram de-
termined experimentally by Williamson & Roshko [32] for wakes produced by
a cylinder oscillating normally to an oncoming uniform free stream. A number
of different wake formation modes, labeled by “S” for singlet, “P” for pair,
and various combinations thereof (e.g., the wake in Fig.4) would be “S+P”)
were identified and delineated in a plot that has as its abscissa the wavelength
of the oscillatory motion of the cylinder and as its ordinate the amplitude of
that same oscillation (both coordinates non-dimensionalized by the cylinder
diameter).

Fig. 5. Theoretical contours superimposed on the Williamson-Roshko bifurcation
diagram (background, blurred). The radial contours, Eq.(18), have no adjustable
parameters.

We have recently tried to provide some theoretical ideas to “rationalize”
the structure of this diagram. A crude approximation suggests that the di-
viding line between the various regimes in the Williamson-Roshko diagram
are radial and circumferential. Also, in general, there are more vortices shed
per cycle as one goes farther out radially from the origin in the diagram. In
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our paper [25] Ponta and I consider the undulatory motion of the cylinder
as a sequence of rectilinear “strokes” interrupted by sharp turns. During any
“stroke” the cylinder sheds much as it would in an oncoming steady uni-
form stream. There is one complication: Since the experiment is conducted
by giving a constant streamwise velocity to the cylinder, the speed along
the actual path varies. Hence the Reynolds number varies and so, because of
the Strouhal-Reynolds number relation, the shedding frequency varies. Apart
from this effect – which is akin to driving an oscillator with a slightly vary-
ing forcing frequency – the length of the rectilinear “stroke” determines how
many vortices are shed. Thus, we have both an effect of the amplitude and of
the wavelength of the oscillation on how many vortices are shed per “stroke”.
Since the number of vortices that are recognized in the wake patterns in terms
of pairs and singlets is an integer, there is a “quantization” of the resulting
wake as a function of the continuously variable control parameters (i.e., wave-
length and amplitude of oscillation). This quantization can be expressed by a
formula

λ

D
St E

(
−(2πA/λ)2

)
= n

π

2
. (18)

Here λ and A are, respectively, the wavelength and amplitude of oscillation
of the cylinder, St is the Strouhal number corresponding to the Reynolds
number for the free stream according to the St − Re relation, and n is an
integer. The function E is the complete elliptic integral of the second kind.
See [25] for a derivation. The curves (18) correspond to the radial delimiting
lines in the Williamson-Roshko bifurcation diagram. When they are plotted
in that diagram, the correspondence is surprisingly good (and we note that
there are no adjustable parameters).

It is more difficult to produce a convincing theory for the radial lines that
divide shedding regimes in the Williamson-Roshko diagram. We believe these
delineations are related to a threshold tolerance of the vortex shedding process
to variations in Reynolds number (and, hence, in the corresponding Strouhal
number) during the oscillatory motion of the cylinder. As we have already
said, the instantaneous Reynolds number for flow about the cylinder varies
in the course of its motion because the streamwise velocity is held constant
in the experiment. Hence the speed along the undulatory path must vary
and it is this speed relative to the fluid that sets the shedding. However,
what such a threshold might be is difficult to tell without a more detailed
quantitative model of the shedding process itself, something that we do not
currently possess. The radial lines in Fig.5 are drawn by choosing values for
such a threshold to give a best fit to the experimentally observed lines. Thus,
what one can say, at best, is that the qualitative explanation may have some
validity. A deeper quantitative understanding awaits.
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6 Concluding remarks

It seems fair to say that vortex dynamics gives conclusions about wake struc-
ture and stability that are difficult to obtain in any other way. Using the wake
vortices as the main degrees of freedom in the theory gives an entirely differ-
ent perspective than other approaches based, for example, on linear or even
non-linear stability considerations.

In the “vortex representation” the problem of two vortices in a periodic
strip gives the structure and translation velocity of the von Kármán vortex
street configurations. Four vortices in a periodic strip give the stability cri-
terion and show, in particular, that even the staggered configuration singled
out by von Kármán’s linearized stability analysis is not stable when second
order perturbations are taken into account.

The problem of three vortices per strip gives an access point to the low-
est order modes of vortex streets observed behind an oscillating cylinder. The
theory of of three-vortices-per-strip currently appears much richer than obser-
vations of wakes behind oscillating cylinders in the sense that there are many
regimes of motion suggested by the analysis that do not seem to have experi-
mental counterparts. This can simply be the result of an incomplete analysis
of the current experimental results or it can be the result of the restricted
access to the full parameter space of the problem that can be achieved when
the vortices must be produced through shedding from an oscillating cylinder.
We note that there are a multitude of stationary patterns (relative equilibria)
but that they are all linearly unstable. This would imply that they must be
sought in an analysis of slow transients in the wake evolution, not necessarily
as immediately produceable steady states.

Based on what happens on the unbounded plane, one would assume that
wakes with four (or more) vortices shed per cycle lead to configurations with
chaotic motion and that no patterns would be expected. Both the premise
and the conclusion in this statement require further work. We may add that
we now understand the problem of three vortices in a periodic strip to be
“maximally chaotic” in the sense that the advection it produces can be a
pseudo-Anosov mapping in a certain region of the flow. We refer the reader to
the recent work on topological chaos by Boyland, Stremler and the author [8, 9]
for an exposition and explanation of these statements. The onset of topological
chaos for advection by three vortices strongly supports the contention above
that wakes with four or more vortices shed per cycle will not show discernible
patterns.

Finally, it seems clear that in spite of the voluminous literature on vortex
wakes, there are still many open problems, even for completely 2D flow. The
new “exotic” wakes revealed by oscillating the vortex-producing body have
opened up a Pandora’s box of possibilities that we are only beginning to grasp
theoretically.
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My research in this area has been done in close collaboration with F.
L. Ponta and M. A. Stremler whose insights are reflected in the above (all
errors and misstatements, of course, being my responsibility). Fruitful discus-
sion with C. H. K. Williamson are also gratefully acknowledged. I thank the
organizers, in particular Mikhail A. Sokolovskiy and Olga I. Yakovenko, for
their care and hospitality. This work is supported by a Niels Bohr Visiting
Professorship at the Technical University of Denmark funded by the Danish
National Research Foundation.
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Theodore von Kármán (Butterworth, London, 1956) 1 339–358.



Vortex dynamics of wakes 15

16. Kochin, N. 1939 On the instability of von Kármán’s vortex streets. Doklady
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