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The net locomotion of a deformable body submerged in an infinite volume
of fluid depends critically on the dynamic coupling between the body shape
deformations and the unsteady motion of the surrounding fluid. A mathematical
description of this coupling at finite Reynolds numbers would require taking
into account the detailed effects of viscosity which are primarily manifested
in the dynamics of the thin shear layers around the body that separate at
the body tail to create vortical structures. The classical studies of Wu and
Lighthill addressed this problem in two different ways. Wu considered a planar
deformable plate swimming in an inviscid fluid and used the assumption of
small shape amplitudes which enables one to solve for the trailing vortex sheet
analytically and investigate the problem of optimum shape deformations in the
sense of minimizing the energy lost in creating the trailing wake, [1]. Lighthill, on
the other hand, studied the swimming of a slender body due to large amplitude
deformations and avoided solving for the complex wake dynamics by considering
the momentum balance in a control volume containing the deformable body and
bounded by a plane attached at its trailing edge, [2].

In this talk, we present a derivation of the laws governing the swimming
of a deformable body in response to prescribed (actively controlled) shape de-
formations and the effect of the wake vorticity, [3]. The underlying balance
of momenta, though classical in nature, provide a unifying framework for the
swimming of planar and three-dimensional bodies and they hold even in the
presence of viscosity. When applied to the swimming of slender bodies, the
derived equations can be viewed as a generalization of Lighthill’s slender body
theory. When neglecting vorticity, the derived equations reduce to a known
model for the locomotion of an articulated body in potential flow. We exam-
ine locomotion in potential flow through a number of examples. In one class
of examples, we compute the locomotion gaits due to, both flapping and un-
dulating, shape deformations and investigate distance-optimal deformations for
the corresponding body geometries, [3], [5,6]. In another class of examples, we
consider a rigid body interacting dynamically with surrounding point vortices
and we demonstrate that the rigid body can swim in the direction opposite to
the motion of point vortices at no energy cost, [4].
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