An example of finite-time singularities in the 3d Euler equations

Xinyu He
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
IUTAM Symposium "150 Years of Vortex Dynamics" Seminar presentation/Poster (submitted on 22/02/2008)

1. Introduction. The 3d Euler equations describe an ideal, incompressible fluid:

$$
\begin{equation*}
\partial_{t} v+v \cdot \nabla v=-\nabla \pi, \quad \operatorname{div} v=0 \quad \text { in } \mathbb{R}^{3} \times(0, T] \tag{1}
\end{equation*}
$$

where $v(x, t)=\left(v_{1}, v_{2}, v_{3}\right)$ denotes the velocity field, and π the pressure. Given C^{∞} divergence-free initial data $v(x, 0)=v_{0}, v_{0} \in L^{2}\left(\mathbb{R}^{3}\right)$, it is an open question as to whether $v(x, t)$ is regular at $T=+\infty$ (cf. [C]).

In this paper, we shall construct a special class of weak solutions to the Euler equations which blow up at a finite time $t=T$. Our key idea is to search for

$$
\left\{\begin{array}{l}
v(x, t)=v_{s}+u(x, t), \quad \pi(x, t)=\pi_{s}+p(x, t), \tag{2}\\
\operatorname{div} v_{s}=\operatorname{div} u=0, \quad v_{0}=v_{s}^{0}+u_{0} \in H^{m}\left(\mathbb{R}^{3}\right), \quad m \geq 3
\end{array}\right.
$$

Above $\left(v_{s}, \pi_{s}\right)$ is the self-similarity transformation for the Euler equations:

$$
\begin{equation*}
v_{s}(x, t)=V(y)(T-t)^{-\alpha}, \quad \pi_{s}(x, t)=\Pi(y)(T-t)^{-2 \alpha}, \quad y=x(T-t)^{-\beta} \tag{3}
\end{equation*}
$$

where $\beta \in[2 / 5,1], \alpha+\beta=1, \alpha, \beta>0$ and $T<+\infty$. Substituting (3) into (1), the profile velocity $V(y)$ satisfies the system

$$
\begin{equation*}
\alpha V+\beta y \cdot \nabla V+V \cdot \nabla V+\nabla \Pi=0, \quad \operatorname{div} V=0 \tag{4}
\end{equation*}
$$

For $\alpha=\beta=1 / 2$, (4) is the limiting case of Leray's self-similar Navier-Stokes equations. If $V(y) \not \equiv 0$ is found, then v_{s} given by (3) blows up at $t=T$, consistent with the criterion [CFM]. Hence our task is to find $v(x, t)=v_{s}+u$ defined on $\mathbb{R}^{3} \times(0, T)$, with $u(x, t)$ being in an appropriate function space.
2. Existence of self-similar solutions v_{s} in an exterior domain. Let us begin with summarising a previous result:
Proposition A. (cf. Theorem $3 C[H]$). Let $\alpha=\beta=1 / 2$ and $\Omega=\mathbb{R}^{3} \backslash \bar{B}_{1}(0)$. Denote by σ and τ the unit normal and the unit tangent to $\partial \Omega$, respectively. Suppose that $f \in W^{2,4}(\partial \Omega ; \mathbb{R}), g \in W^{3,4}(\partial \Omega ; \mathbb{R})$, and that these functions are small in appropriate norms. Then there exists a unique, stable solution $(V, \Pi) \in C^{1}\left(\Omega ; \mathbb{R}^{3} \times\right.$ \mathbb{R}) to the system (4), satisfying the prescribed data

$$
\left\{\begin{array}{l}
\left.\sigma \cdot V\right|_{\partial \Omega}=0 \tag{5}\\
\left.\sigma \cdot \operatorname{curl} V\right|_{\partial \Omega}=f(y), \int_{\partial \Omega} f d y=0 \\
\left.((V+\beta y) \times \operatorname{curl} V)_{\tau}\right|_{\partial \Omega}=\nabla_{\tau} g(y),
\end{array}\right.
$$

and vanishing at infinity $\quad \begin{gathered}V=\mathcal{O}\left(|y|^{-1}\right), \quad \nabla V=\mathcal{O}\left(|y|^{-2}\right) \quad \text { as } \quad|y| \uparrow \infty . ~\end{gathered}$

Going back to the (x, t) variables, Proposition A asserts that a self-similar solution $v_{s}(x, t)=V(y) / \hat{r}(t)$ exists on a set (the exterior of closed shrinking balls),

$$
\begin{equation*}
\Sigma=\bigcup_{t \in(0, T)} \widehat{\Omega}(t, n), \quad \widehat{\Omega}(t, n)=\left\{x \in \mathbb{R}^{3} \backslash\{0\}: \hat{r}(t) \leq|x|<n \hat{r}(t)\right\} \tag{6}
\end{equation*}
$$

where $\hat{r}(t)=\sqrt{T-t}, n \in \mathbb{N}$ sufficiently large. Let B_{r} be a ball in \mathbb{R}^{3} centred at the origin with radius r. The set Σ naturally suggests dividing $\mathbb{R}^{3} \times(0, T)$ into Ω^{I} (the inner region, with "shrinking" spheres $S_{\hat{r}(t)}$ as its boundary), and Ω^{II} (the outer region):

$$
\begin{equation*}
\Omega^{\mathrm{I}}:=\bigcup_{t \in(0, T)} B_{\hat{r}}(t), \quad \Omega^{\mathrm{II}}:=\mathbb{R}^{3} \times(0, T) \backslash \overline{\Omega^{\mathrm{I}}}, \quad S_{\hat{r}(t)}:=\partial \widehat{\Omega} . \tag{7}
\end{equation*}
$$

Since $\Sigma \subseteq \Omega^{\text {II }}$, we need to find other solutions $u(x, t)$ to complete the problem.
3. Construction of outer and inner solutions $u(x, t)$. Given that v_{s} exists on the set Σ as in (6), substituting (2) into (1) and using (4), we have

$$
\left\{\begin{array}{l}
\partial_{t} u+u \cdot \nabla u+\nabla p=v_{s} \times \operatorname{curl} u+u \times \operatorname{curl} v_{s}-\nabla\left(u \cdot v_{s}\right) \tag{8}\\
\operatorname{div} u=0 \quad \text { in } \Omega^{\mathrm{I}} \cup \Omega^{\mathrm{II}}, \quad u(x, 0)=u_{0}(x):=v_{0}-v_{s}^{0}, \quad x \in \mathbb{R}^{3} \\
\lim _{|x| \uparrow \infty} u(x, t)=0 \quad t \in[0, T] .
\end{array}\right.
$$

First, we prove in Lemma B existence of u to (8) on Ω^{II}, Ω^{II} as in (7). This is done by considering a natural boundary condition to Euler flows, $\left.\sigma \cdot u\right|_{\partial \widehat{\Omega}}=0$, then we are able to treat the outer and inner systems separately.

Having obtained an outer solution u^{II}, to find u^{I} on the inner region we impose

$$
\left.u^{\mathrm{I}}\right|_{\partial \widehat{\Omega}}=u^{\mathrm{II}}(x, t)+\left.v_{s}\right|_{\partial \widehat{\Omega}},\left.\quad p^{\mathrm{I}}\right|_{\partial \widehat{\Omega}}=p^{\mathrm{II}}(x, t)+\left.\pi_{s}\right|_{\partial \widehat{\Omega}},
$$

requiring the continuity of velocities, and that of the pressure, across the boundary. Under this assumption, Theorem C states that (1) has at least one weak solution $v=v_{s}+u$ on $\mathbb{R}^{3} \times(0, T)$, which is further shown to become unbounded at a single point in space-time.
Remark I. By Lemma 4B [H] and Theorem C, one deduces that the weak solution $v=v_{s}+u$ has finite energy: $\int_{\mathbb{R}^{3}}|v(x, t)|^{2} d x \leq\left\|v_{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \forall 0<t \leq T$. (see also $[\mathrm{M}]$ for the localised vortex interaction.)
Remark II. Starting from smooth initial data of finite energy, it is demonstrated that the Euler equations on \mathbb{R}^{3} can develop a singularity as a sum $v=v_{s}+u$. Although singular scalings often observed in computations are close to that of v_{s}, it is clear that a full solution v needs not to have any definite self-similar forms.

References

[C] P. Constantin, On the Euler equations of incompressible fluids, Bull. Amer. Math. Soc. 44 (2007), 603-662.
[CFM] P. Constantin, C. Fefferman and A. J. Majda, Geometric constraints on potentially singular solutions for the 3d Euler equations, Comm. PDE 21 (1996), 559-571.
[H] X. He, An example of finite-time singularities in the 3d Euler equations, J. Math. Fluid Mech. 9 (2007), 398-410.
[M] H.K. Moffatt, The interaction of skewed vortex pairs: a model for blow-up of the Navier-Stokes equations, J. Fluid Mech. 409 (2000), 51-68.

