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Passive wing pitch reversal in insect flight
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Wing pitch reversal, the rapid change of angle of attack near stroke transition,
represents a difference between hovering with flapping wings and with a continuously
rotating blade (e.g. helicopter flight). Although insects have the musculature to control
the wing pitch during flight, we show here that aerodynamic and wing inertia forces are
sufficient to pitch the wing without the aid of the muscles. We study the passive nature
of wing pitching in several observed wing kinematics, including the wing motion of
a tethered dragonfly, Libellula pulchella, hovering fruitfly, hovering hawkmoth and
simplified dragonfly hovering kinematics. To determine whether the pitching is passive,
we calculate rotational power about the torsion axis owing to aerodynamic and wing
inertial forces. This is done using both direct numerical simulations and quasi-steady
fluid force models. We find that, in all the cases studied here, the net rotational power
is negative, signifying that the fluid force assists rather than resists the wing pitching.
To further understand the generality of these results, we use the quasi-steady force
model to analyse the effect of the components of the fluid forces at pitch reversal, and
predict the conditions under which the wing pitch reversal is passive. These results
suggest the pitching motion of the wings can be passive in insect flight.

1. Introduction
Owing to morphological constraints, insects must reverse the direction of their

wing motion periodically. Correspondingly, the wing pitch is also reversed in order
to maintain a positive angle of attack during the entire period. At the transition
from an up-stroke to a down-stroke, the wing pitch reversal is called pronation, and
at the transition from a down-stroke to an up-stroke, it is called supination. In a
dragonfly, the wing pitch reversal is primarily responsible for orienting a wing so that
it plunges down at a large angle of attack and then returns at a smaller angle of
attack. Figure 1 shows snapshots of the wing motion of a tethered dragonfly over one
period. Pronation occurs in frames 1–2 and supination can be observed in frames 5–7.
In other insects (e.g. fruitflies), the pitch reverses such that the mid-stroke angle of
attack is about the same in the back and forth strokes. This sudden wing pitch
reversal marks the main difference between hovering using a flapping motion and
using a continuously rotating wing. It is therefore of interest to understand whether
the pitch reversal requires active muscle control from the insect or whether it can
result from a passive mechanism.

† Present address: Department of Mathematics, Southern Methodist University, Dallas, TX
75275, USA.
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Figure 1. Snapshots from the video of tethered dragonfly motion during one period
(Russell 2004; Wang & Russell 2007).

It is known that insects are able to modulate the timing of pitch reversal,
which implies that muscles can actively control pitching (Ellington 1984; Dickinson,
Lehmann & Götz 1993). This may be especially useful during manoeuvring (Dickinson
et al. 1993). It has been suggested, however, that the torsion axis is positioned so that,
for steady flight, aerodynamic forces and wing inertia aid wing pitching (Norberg
1972). The muscle forces that an insect exerts on the wings act through an axis near
the leading edge of the wing (Norberg 1972). The wing’s centre of mass, however, is
behind the leading edge. Therefore, near stroke reversal, a muscle force applied near
the leading edge will cause a moment about the centre of mass that will cause it to
pitch. From analysis of the inertial forces on the wings of a housefly (Diptera), it
has been suggested that wing inertia is sufficient to cause wing pitch reversal (Ennos
1988).

In this paper, we compute the power required by the insect to pitch the wing.
We take into account aerodynamic forces on the wing as well as the wing inertia.
To compute the aerodynamic power for the observed wing kinematics, we solve the
two-dimensional Navier–Stokes equations as well as a simplified quasi-steady force
model. We analyse several wing kinematics, including those measured from a tethered
dragonfly (Russell 2004; Wang & Russell 2007), as well as published kinematics of
a hovering fruitfly (Fry, Sayaman & Dickinson 2005), hovering hawkmoth (Willmott
& Ellington 1997a), and simplified dragonfly hovering kinematics (Wang 2000). We
find that for all the kinematics, no power is required from the insect for wing pitch
reversal, thus the wing pitching is passive. We further observe that the rotational
power due to aerodynamic forces is comparable to inertial effects in fruitflies and
dragonflies. In hawkmoths, the inertial effects become more important. Employing a
quasi-steady model, we show that for any kinematics where pitch reversal occurs near
stroke reversal, where forces due to wing acceleration and wing rotation dominate
those due to velocity, both the aerodynamic and the inertial forces aid the wing
pitching. A signature of passive wing pitch reversal is the direction of the torsional
wave travelling along the back of the wing during reversal. If it propagates from near
the tip to the root, then this suggests that the aerodynamic force, which is maximal
near the tip, is responsible for the turning motion. If the wave propagates from the
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Figure 2. (a) Two-dimensional coordinate system. The wing chord is shaded in grey. For a
dragonfly, the torsion axis and the centre of mass are located at approximately 15% and 30 %
of a chord length behind the leading edge of the wing. (b) A snapshot of vorticity field during
the flapping period just prior to pronation.

root to tip, then it suggests that the muscle force applied near the root, is turning the
wing. We observe a torsional wave travelling from tip to root for the dragonfly wing
kinematics, thus providing experimental evidence for our results.

2. Methods
2.1. Determining passivity

In order to determine whether the wing pitch reversal is active or passive, we calculate
the power required by the insect to produce the observed pitching motion. The pitch
is the rotational motion of the wing about the torsion axis, the axis through which the
forces produced by the muscles of the insect wing act, and about which forces applied
to the wing will generate no moment on the wing (Norberg 1972). Accordingly, in
order to determine the power requirements, we calculate the rotational power about
this line.

Although the immersed interface method we use for direct numerical simulation is
naturally suited for modelling a flexible wing structure, in this paper, we approximate
the wing as a rigid plate to calculate two-dimensional forces and power. This is
motivated by the observation that the most visible deformation during wing pitch
reversal is the twisting along the torsional axis (Song et al. 2000). The twisting is
mainly caused by the different amounts of wing rotation along the wingspan. This
deformation is different from the camber of a clamped plate owing to the forces
applied at the two ends. The rigid-plate approximation simplifies analysis and also
helps us decouple the effect of the wing camber (Combes & Daniel 2003), from the
effect of twisting due to pitching which is our current focus. We will first calculate
the rotational power on a two-dimensional rigid wing. By applying blade-element
theory to the two-dimensional result, we can qualitatively explain the twisting along
the span of the wing. The two-dimensional cross-section of the insect wing is shown
in figure 2(a). In this model, the angular motion of the three-dimensional wing is
described by translation in the x̂- and ŷ-direction, while pitching corresponds to the
angle β . The locations of the torsion axis and centre of mass of a dragonfly wing are
taken from measurements in Norberg (1972).
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Given a set of kinematics, the total power that is exerted by the insect, Pinsect , can
be calculated from,

Pinsect = macm · vcm + Icm β̈β̇ − Paerodynamic, (2.1)

where acm and vcm are the velocity and acceleration of the centre of mass of the
wing, m and Icm are the mass and moment of inertia of the wing and Paerodynamic is
the rate of work done by the fluid on the wing. The power can be decomposed into
rotational and translational components about the torsion axis. The power required
by the insect to pitch the wing, Prot , is then

Prot = β̇dcm(max sinβ − may cos β) + Icm β̈β̇︸ ︷︷ ︸
P rot

inertial

−β̇dgc(Fx sinβ − Fy cosβ) − β̇τ︸ ︷︷ ︸
−P rot

aerodynamic

, (2.2)

where dcm is the distance from the centre of mass to the torsion axis, dgc is the
distance from the geometric centre of the wing to the torsion axis and Fx , Fy and τ

are the aerodynamic forces and torque about the geometric centre of the wing, and
the accelerations, ax and ay , are at the centre of mass.

2.2. Immersed interface method

We solve for the aerodynamic forces and torque in (2.2) by solving the Navier–Stokes
equations directly using the immersed interface method, described in Xu & Wang
(2006a). This is a spatially second-order-accurate method in which the boundary of
an object is represented by a singular force that is added as a forcing term to the
equation:

∂v

∂t
+ ∇ · (vv) = −∇p +

1

Re
�v +

M∑
l=1

Fl , (2.3)

where v and p are the velocity and pressure fields, Fl is the singular force from object
l and Re is the Reynolds number for our simulation. The equations in this section are
shown in dimensionless form where the velocity scale and length scale are determined
by the average wing velocity and flapping amplitude, respectively.

The singular force in (2.3) is computed as

F =

∮
δ�

f (α, t)δ(x − X(α, t))δ(y − Y (α, t)) dα, (2.4)

where δ� is an object boundary, X and Y are the coordinates of the boundary, f is the
singular force density, and α is a non-dimensional Lagrange parameter. The singular
force causes jumps across the boundary in the pressure, derivatives of pressure and
derivatives of velocity. Expressions for the jumps, integral to the immersed interface
method, were derived in Xu & Wang (2006b). The singular force density necessary to
enforce the prescribed motion of the wings is calculated by a spring model analogous
to that described in Xu & Wang (2006a).

The Navier–Stokes equations are solved in primitive variables on a MAC grid in
pressure Poisson form. Forward-time integration is done using a fourth-order Runge–
Kutta method as described in Xu & Wang (2006a). The actual dragonfly wing motion
occurs at Re =O(103). However, as noted in Russell (2004), the aerodynamics are
insensitive to Re above Re = 200. Figure 2(b) is a snapshot of the resulting vorticity
field at Re ≈ 250. For these simulations, we enclose the wings in an 8 × 8 chord length
rigid box, for which a sufficiently accurate approximation of the pressure boundary
condition can be derived (Xu & Wang 2006b). The wings are modelled as 6 : 1 aspect
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ratio rounded rectangles. The qualitative result, that large negative peaks occur in
figure 5 indicating that pitch reversal is passive, is independent of the particular shape
of the wing.

We tested the algorithm extensively to ensure the accuracy of our results. We
performed both spatial and temporal convergence testing and found that a 256 × 256
grid with dt = 5 × 10−4 sufficiently resolves the flow. The truncation of the domain is
also found not to affect our results significantly.

The aerodynamic force about the geometric centre of the wing is given by,

F = −
∮

δ�

f dα + S
duT

dt
, (2.5)

where S is the area enclosed by the wing boundary, uT is the translational velocity of
the wing, and f , α are defined above.

The rate of work done by the fluid on the wing can be computed as

P =

∮
δ�

σ+
ij uinjds, (2.6)

where σ+
ij is the stress tensor on the outer surface of the wing boundary, and nj is the

outward-pointing surface-normal vector. From force balance (Xu & Wang 2006b),
the jump condition for the stress tensor satisfies

[σij ]nj = (σ+
ij − σ −

ij )nj = −fi

J
, (2.7)

where J = ds/dα is the Jacobian, and σ −
ij is the stress tensor on the inner surface of

the wing boundary. Noting that ds = Jdα, we can combine (2.6) and (2.7) to

P = −
∮

δ�

f · udα +

∫
δ�

σ −
ij uinjds

= −
∮

δ�

f · udα +
dK

dt
+

1

Re

∫
�

(
∂ui

∂xj

∂ui

∂xj

+
∂uj

∂xi

∂ui

∂xj

)
dA

≈ −
∮

δ�

f · udα +
dK

dt
, (2.8)

where K is the total kinetic energy in the region Ω enclosed by the wing boundary.
The term associated with dissipation is proportional to 1/Re, and is dropped because
for our calculations it is approximately 0.4 % of the size of the other terms.

The torque about the wing centroid can be calculated similarly to the power by

τ =

∮
δΩ

εij riσ
+
jknk ds

= −
∮

δΩ

εij rifj dα +
d

dt

∫
Ω

εij riuj dA, (2.9)

where εij is the two-dimensional Levi–Civita symbol, and ri is the vector from the
centroid of the wing to its boundary.

2.3. Quasi-steady model of aerodynamic forces

For an insight into the interplay of forces that exist during the wing pitch reversal,
we also study the wing motion using a quasi-steady model. Previous studies have
compared the instantaneous force in hovering flight to quasi-steady models (Sane &
Dickinson 2002; Wang, Birch & Dickinson 2004). We use the force model developed
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to study fluttering and tumbling plates in fluids (Pesavento & Wang 2004; Andersen,
Pesavento & Wang 2005a, b).

We calculate aerodynamic force, F, and torque, τ , from a wing motion using,

Fx ′ = −m11v̇x ′ + m22β̇vy ′ − ρf Γ vy ′ − F ν
x ′, (2.10a)

Fy ′ = −m22v̇y ′ − m11β̇vx ′ + ρf Γ vx ′ − F ν
y ′, (2.10b)

τ = −Iaβ̈ + (m11 − m22)vx ′vy ′ − τ ν, (2.10c)

where v is the wing velocity, I is the moment of inertia, m11, m22 and Ia are the
coefficients of added mass and moment of inertia, Γ is the circulation, and Fν ,
τ ν are the dissipative forces and torque, respectively. The added mass coefficients,
m11, m22 and Ia , are determined by taking the average values for the inscribed
and circumscribed ellipses around the wing. For an ellipse with semi-major axis a,
semi-minor axis b, m11 = πρf b2, m22 = πρf a2 and Ia = (1/8)πρf (a2 − b2) (Sedov 1965).
Subscripts x ′ and y ′ above denote components in the x ′ and y ′ directions, and β is
the orientation of the wing (figure 2a). The primed coordinate system in the above
equations, as defined in figure 2(a), is co-rotating with the wing.

The circulation, Γ , is calculated from,

Γ = −2CT dle

vx ′vy ′

|v| + 2CRd2
le β̇, (2.11)

where CT and CR are dimensionless constants, and dle is the distance from the
geometric centre of the wing to the leading edge. The term involving CT is associated
with the translational circulation, while the term involving CR is the rotational
circulation, their specific values are discussed below. The dissipative force, Fν , and
the dissipative torque, τ ν , are calculated from

Fν = ρf dle

(
A|v| − B

v2
x ′ − v2

y ′

|v|

)
v, (2.12a)

τ ν = πρf d4
le

(
1

T
µ1 + µ2|β̇|

)
β̇, (2.12b)

where T is the flapping period and the dimensionless constants A, B , µ1 and µ2 are
Reynolds-number dependent. The rotational power is then calculated by making use
of (2.2).

We find that the predictions using the quasi-steady model closely match those from
the direct simulations. There are two notable exceptions to this. First, the torque
about the wing centroid is poorly modelled by (2.10c). However, given the small
magnitude of the torque, it has a very small contribution to Prot (equation (2.2)) and
does not affect our qualitative results. Also, both wings generate a net downward
jet that is not present in the quasi-steady model. Significant discrepancies between
the quasi-steady model and direct simulations coincide with the wings crossing this
jet near supination. These effects are further discussed in the Appendix. In figure 6,
P rot

aerodynamic is compared between direct simulations and the quasi-steady model. As
can be seen in the figure, the peaks in the quasi-steady model have the same sign as
in the direct simulations. Since we are mainly interested in the sign of these peaks
when determining the passive nature of the wing pitching, we will make use of this
quasi-steady model in our general analysis in § 5.
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Figure 3. Illustration of the three-dimensional to two-dimensional conversion of the dragonfly
wing kinematics. (a), (b) A three-dimensional image of the dragonfly with the two-dimensional
projection cylinder. (c) The two-dimensional wing with the slices superimposed on them.

2.4. Dragonfly wing kinematics

We use the tethered dragonfly wing kinematics measured in Russell (2004) and
Wang & Russell (2007). In order to obtain the motion in three dimensions using
a single camera, a mirror was placed near the dragonfly. Both the insect and the
reflection were recorded using a high-speed camera at 1500 frames s−1. In figure 1,
we can see snapshots of the captured wing motion reproduced from Russell (2004)
and Wang & Russell (2007). From the video, three-dimensional kinematics were
reconstructed using three marked points on the wings for 5 beats of the insects wing.
This was done by treating the wings as rigid bodies, ignoring any deformation.

The two pairs of wings move symmetrically and the wing interaction between the
two sides is negligible owing to the small stroke angle, we therefore simulate a pair of
wings on one side. As mentioned above, we simulate a two-dimensional cross-section.
As shown in figure 3, the stroke-planes of the fore- and hind-wings are nearly parallel,
oriented at 37◦ from the vertical. As a result of this, a single cylinder can be aligned
such that the axis is perpendicular to both stroke planes. To make use of this for the
two-dimensional projection, we take such a cylinder with a radius of two-thirds of the
wingspan of the forewing, and use its intersection with the leading edge of each wing to
determine the trace of each wing on the cylinder. We convert to Cartesian coordinates
by unwrapping the cylinder about the mid-stroke and defining the two-dimensional
coordinate system so that ŷ corresponds to the vertical direction. Making use of
a second intersection point of the wing with the cylinder, we additionally calculate
the pitching angle in the two-dimensional coordinate system. To avoid varying the
chord length throughout the motion, a constant chord length is maintained and wing
position and orientation are determined by the leading-edge intersection of the wing
and the pitching angle determined from the second intersection point, respectively.
This corresponds, approximately, to taking the two-dimensional cross-section of the
wing shown in figure 3(c).

The resulting motion is parameterized by the position of the centre of the wing,
x(t) and y(t), and the angular orientation of the wing, β(t), as defined figure 2(a).
The average two-dimensional stroke is given by fitting the resulting wing kinematics
with an 8 parameter Fourier series to each of x(t), y(t) and β(t). The resulting two-
dimensional kinematics, the unwrapped motion of the wings, are shown in figures 4(a)
and 4(b). On these figures, we also see the regions of pronation and supination, which
are found by analysing the pitching velocity of the wing, β̇ , shown in figures 4(b) and
4(d).

3. Passive wing rotation in dragonfly flight
In figure 5, we show the rotational power about the torsion axis as a function

of time for the fore- and hind-wings, respectively. These are calculated using (2.2)
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Figure 4. Projected motion and angular velocity of a fore- ((a) and (b), respectively) and a
hindwing ((c) and (d), respectively). In (a) and (c), the lines indicate snapshots of the angular
orientation of the wing (for clarity, line lengths are scaled to 40 % of the actual chord length
of the wing). The leading edge of the wing is denoted by the dot. Lengths are in units of chord
length, and time in units of flapping period.

for 50 wing strokes and then averaged. Shown are both the contribution from the
aerodynamics and the wing inertia. During both pronation and supination, Prot has
strong negative peaks that are greater in magnitude during pronation than during
supination. The negative peaks indicate that the fluid, by doing work on the wings,
actually aids, rather than resists, the wing pitch reversal. This shows that the wing
pitch reversal is passive. Both inertial and aerodynamic effects have a tendency to
pitch the wing in the proper direction, but in this case, aerodynamic effects dominate.

To further quantify P rot
aerodynamic , we analyse it using the quasi-steady components

found in (2.10c). Results are shown in figure 7. P rot
aerodynamic , as predicted by the quasi-

steady model, is insensitive to the exact values of the quasi-steady parameters except
for CR . We therefore use A= 1.4, B = 1.0, CT = 1.2, µ1 = 0.2 and µ2 = 0.2 as in
Andersen et al. (2005 b). CR is determined by minimizing the difference between the
quasi-steady and computational fluid dynamics (CFD) results (figure 6).

In figure 7, we see that for both wings, the added mass term dominates all other
terms at both pronation and supination. The next dominant term is the rotational
circulation term which aids passivity at pronation of the wings and opposes it at
supination. The dissipative and rotational circulation terms play only minor roles in
wing pitch reversal. However, they tend to oppose wing pitch reversal at the beginning
of pronation and supination and aid it in the latter half of it. We therefore see that for
the dragonfly kinematics, the passivity of wing pitch reversal is determined, to a large
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extent, by added mass and rotational circulation effects, with other terms playing a
minor, but discernible, role.

4. Other cases of passive wing pitch reversal
To see whether the above described passive mechanism for wing pitch reversal

occurs in other insects, we analyse kinematics for a hovering fruitfly (Fry et al.
2005), hovering hawkmoth (Willmott & Ellington 1997a), and simplified dragonfly
hovering kinematics (Wang 2000). As with the dragonfly, we calculate Prot using (2.2)
for a chordwise cross-section of the wing at 66 % the wingspan. In order to model
aerodynamic forces, we use the quasi-steady model from (2.10c). For the simplified
hovering kinematics, the morphological parameters of the dragonfly studied in the
previous section are used. For the fruitlfy and hawkmoth, actual morphology of the
insects is employed (Willmott & Ellington 1997b; Fry et al. 2005).

Results for Prot along with each wing motion are shown in figure 8. For each of
the kinematics, we see similar results to the dragonfly kinematics. Large negative
peaks occur close to the wing pitch reversal, which is nearly coincidental with stroke
reversal. Because of the relatively light wings of dragonflies and fruitflies (figures 8a
and 8e), the aerodynamic component of Prot is comparable to the inertial one. For
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the hawkmoth, however, the inertial component becomes dominant. This is expected,
as the hawkmoth has a large wing mass relative to its body mass.

5. Quasi-steady analysis of wing pitch reversal
The fact that passive wing pitch reversal is observed for these different wing

kinematics suggests the need for a general explanation. The passive pitching can be
intuitively explained as follows. When the wing decelerates prior to stroke reversal, the
fluid continues to move forward and pushes the centre of the wing forward causing it
to rotate about the torsion axis. This is the added-mass effect. As the wing continues
to pitch after stroke reversal, lift, drag and added mass forces on the wing will all be
directed in a way that will cause pitch reversal to occur passively. Below, we analyse
the relative importance of these terms in the framework of the quasi-steady model.
We do this by inspecting the components in the quasi-steady expression for Prot term
by term.

If the wing is thin, b/a � 1, then the added mass coefficients can be simplified as
m11 → 0, m22 → ma . Hence, we can combine (2.2) and (2.10c) to write Prot in the
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co-rotating coordinate system as,

Prot = [(Icm + Ia)β̈ − (mdcm + madgc)ay ′ + mavx ′vy ′︸ ︷︷ ︸
Inertial and added mass

− dgcF
ν
y ′ + τ ν︸ ︷︷ ︸

Dissipative

+ ρf dgcvx ′Γ︸ ︷︷ ︸
Circulation

]β̇. (5.1)

All terms in the equation appear as defined previously. We analyse (5.1) term by term,
and seek criteria that, when satisfied, result in wing pitch reversal being passive.

Near stroke reversal, the translational velocity of the wing is small, and therefore
drag and circulatory terms will be small because of their velocity dependence. The
terms (Icm + Ia)β̈β̇ − (mdcm + madgc)ay ′ β̇ are independent of velocity and dependent
on the acceleration of the wing. Therefore, when pitch reversal occurs in this region
added mass and inertial terms dominate Prot . We therefore, first, consider the balance
of these two dominant terms. They aid the wing pitch when their sum is negative,
this occurs when

|β̈| �
mdcm + madgc

Icm + Ia

|ay ′ |. (5.2)

These terms determine a limit on angular acceleration below which added mass
and inertial effects aid in pitch reversal. In figure 9, we plot β̈∗ =(mdcm + madgc)/
(Icm + Ia)|ay ′ | against |β̈| for snapshots in time during the pronation and supination
of the previously mentioned wing kinematics. Added mass and inertial effects aid
wing pitch reversal for any points that lie below the identity and oppose it otherwise.
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As we see from the figure, most points lie below this line. Therefore, these terms tend
to aid pitch reversal during both pronation and supination. The torque due to these
terms will pitch the wing such that the leading edge of the wing remains the edge
near the torsional axis.

As mentioned, the drag and circulatory terms are small near stroke reversal,
however, they can play a role in wing pitching if pitch reversal occurs sufficiently
for away from stroke reversal. From (2.12b), we see that τ ν will always oppose
wing rotation, but is negligible. The other drag term Fν ∝ −|v|v will oppose the
translational motion of the wing. Therefore, if pitch reversal occurs before stroke
reversal, this term opposes pitching, and aids it after stroke reversal. This is in
agreement with observations in figure 7.

The circulation term can be decomposed into translational, P rot
ΓT

, and the rotational,
P rot

ΓR
, components. Following (2.11),

P rot
ΓT

= −2CT ρf dgcdle

v2
x ′vy ′

|v| β̇. (5.3)

This term aids pitch reversal when the sign of vy ′ and β̇ are the same. This occurs
when the trailing edge is rotating away from the direction in which it is moving, as
is the case when the wing pitches after stroke reversal. P rot

ΓR
can be calculated from

P rot
ΓR

= 2CRρf dgcd
2
levx ′ β̇2. (5.4)
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Figure 10. Torsional wave propagating along the trailing edge of the wing from base to tip
near pronation.

Because of its linear dependence in velocity, its magnitude is typically larger than either
drag or translational circulation near wing reversal. The sign of PΓ is determined by
the sign of vx ′ , and opposes wing pitching unless the leading edge is changed from near
the torsion axis to the other edge of the wing, which can happen momentarily during
the pitch reversal (figure 4). In figure 7, we see that translational circulation aids wing
pitch reversal in the latter half of stokes, past stroke reversal. Rotational circulation
helps rotate the wing only during pronation, where the leading edge temporarily
changes away from the torsion axis. It has a tendency of opposing pitching during
supination, where the leading edge remains unchanged.

6. Signature of passive wing reversal
A signature of active versus passive wing pitch reversal is the direction of the

torsional wave travelling along the trailing edge of the wing during wing reversal.
If the wave propagates from the root to the tip, then the wing pitch reversal is
likely to be activated by the muscle, which is applied near the wing root. Such a
wave was previously observed in the study of a desert locust, Schistocerca gregaria
(Weis-Fogh 1973). If, on the other hand, the wave propagates from near the tip to
the root, then this suggests that the aerodynamic force, which is maximal near the
tip, is responsible for the turning motion. This type of torsional wave was observed
in Ennos (1988) for the wings of Diptera during passive wing rotation observed in
those insects. In figure 10, we show an enlargement of several frames captured for the
tethered dragonfly around the transition from up-stroke to down-stroke. We observe
a torsional wave propagating along the trailing edge of the wing, starting near the
wing-tip and ending near the wing base. This provides additional evidence for the
passive nature of the wing pitching as analysed above.

The torsion along the length of the wing is directly related to the angular rotation
of each wing segment comprising it. Using the blade-element approximation and the
wing shape of the dragonfly, we determine, for each segment, the torque caused by
aerodynamic forces and the insect muscle. The muscle forces act at the torsion axis
and are calculated by ensuring that the translational acceleration of the wing matches
the wing kinematics, Finsect = ma − Faerodynamic . The torque about the centre of mass
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supination, the opposite happens. Therefore, at both pronation and supination the wing
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of a segment is then

τ = τgc + (dcm − dgc)(Fy cos β − Fx sinβ) + (dcm − dta)(F
insect
y cos β − F insect

x sinβ)

= Icm(r)β̈. (6.1)

We approximate the wing as having uniform surface mass density. Thus, the moment
of inertia of a blade element is Icm ∝ c(r)3 at span r . Equation (6.1) determines the
pitching motion of each blade element independently of the others. We integrate this
equation over pronation and supination to determine how independent blade elements
would move based merely on aerodynamic force, and the prescription of the torsion
axis motion.

In figure 11, we show the results of integrating (6.1) for the fore- and hind-wings
of the dragonfly. We see that if each blade element is allowed to move independently,
then the tip of the wing will move ahead of the base. Since a wing is continuous, this
will induce a torsional wave along the wingspan during pronation and supination
that travels from the wing tip to the base (figure 10).

7. Summary
We have analysed the wing pitch reversal in observed hovering wing kinematics

for four different insects. By calculating the rotational power required to pitch the
wing using direct numerical simulation and quasi-steady analysis, we have shown
that in all these cases, the wing pitch reversal is aided by the aerodynamic torque
and wing inertia. The passive wing pitch is consistent with the observed torsional
wave which propagates from near the wing tip to wing root. Using a quasi-steady
analysis, we identified the main component of the fluid forces that is responsible for
the passive wing pitching. We have further determined the relative importance of the
aerodynamic and the wing inertial force in these different wing motions.

The observed wing pitching in these cases does not require additional power input
from the muscles. This suggests that although insects have the ability to pitch the
wing actively, during steady hovering flight, they can benefit from the aerodynamic
force and inertia to simplify the control of wing pitching.
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Figure 12. Comparison of the quasi-steady model to averaged calculations done using the
immersed interface method for dual-wing and single-wing runs for the fore- (a, c, e, g) and
hind- (b, d , f , h) wings.
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Appendix. Comparison of direct simulation to the quasi-steady model
In figure 12, we show a comparison of aerodynamic forces and power as

calculated using the immersed interface method and using the quasi-steady model.
The parameters are identical to those in § 3.
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As can be seen from the figure (with a few notable exceptions which we will discuss
below) the predictions using the quasi-steady model are rather close to those from the
direct simulations. One difference is the large peak in the drag force (figure 12e), and
the large dip in lift force (figure 12f ) during the hind-wing’s supination, are missing
in the quasi-steady model. Accordingly, the quasi-steady model under-predicts the
average drag and over-predicts the average lift. This, in large part, is because both
wings generate a net downward jet that is not present in the quasi-steady model. The
discrepancies mentioned coincide with the hindwing crossing the shed vortices from
the forewing. As expected calculations where the wings are simulated in isolation (also
shown in figure 12) do not contain these discrepant features and therefore match the
quasi-steady model better. These wing–wing interaction effects make the peaks in
figure 5 larger and wing pitch reversal ‘more passive’.
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