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Search for finite-time singularity (FTS) for Euler’s equation (or the inviscid limit of the Navier-Stokes
equations) is one of the most challenging topics in mathematical fluid dynamics. It is not only of academic
interest, but the location, form and dynamics of singularities could provide crucial models and information
of complex fluid flows such as turbulence and vortex reconnection.

As a specific candidate initial condition for a finite-time singularity in Euler’s equation, the vortex

dodecapole[1]−[3], the superposition of three equal-strength, orthogonal, vortex quadrupoles, has been pro-
posed. The flow under this initial condition is highly symmetric, and it tends to develop to collapse in a
self-similar fashion at the origin of the coordinates. The numerics of pseudospectral method shows that
vorticity scales (tc − t)−1 for the flow. Later, Pelz verified the scaling by investigating the motion of the

vortex quadrupoles with the vortex method[4].
In this paper, we shall examine perhaps the simplest model of the vortex dodecapole in which we replace

the vortex tubes with straight vortex filaments of infinitesimal thickness, and the entire motion is monitored
by tracking the motion of a representative point on one vortex filament. Let us call this model the filament
dodecapole. We attempt to obtain the similarity solution of the model equation using the same procedure

for the similarity solution of 2D point vortex systems[6].

The filament dodecapole, shown in figure 1, has
three orthogonal vortex quadrupoles parallel to
the x, y and z axes, which we name x-, y- and
z-quadrupole, respectively. We locate a rep-
resentative point at the intersection of one of
the z-quadrupole with the plane of z = 0 in
the first quadrant of the xy-plane, and call it
P = (x0, y0, 0), (x0 > 0, y0 > 0). First we
write down the velocity at (x, y) in the xy-
plane(z = 0) induce by z-quadrupole with fil-
aments parallel to the z axis and go through
(x0, y0), (−x0, y0), (x0,−y0), (−x0,−y0). Letting
the strength Γ = ±2π, the horizontal and verti-
cal velocity components of the induced velocity
at P(x0, y0, 0)are obtained by making use of the
high symmetry of the system.
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Figure 1: The filament dodecapole

The final result of the equations are
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the above equations provide an autonomous dynamical system for the motion of x0(t) and y0(t), and hereafter
we shall concentrate on these equations.

We seek the similarity solutions for (1) and (2) by the following procedure. First we assume that all the
variables develop with the same time dependence, f(t), and substitute

x0(t) = f(t)ξ, y0(t) = f(t)η. (3)

into the equations (1) and (2). By separating variables into the time and space parts, we obtain two
equations,
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where c is a real constant to be determined consistently with other variables.
After some labor, we can obtain the similarity solutions of (4) and (5). We will discuss the stability of

the similarity solutions and the physical meaning of them. Some realistic features of the solution can been
seen when we look at the motion of particles around the solution.
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