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In 1973 Weis-Fogh [1] studied the flight of different
hovering insects, such as some species of moths, flies or
wasps, in particular the Chalcid wasp Encarsia formosa

whose wing span is less than 2mm. It has two pairs of
wings, with a wing chord of about 0.2mm, which move
as a single unit. Weis-Fogh showed that the observed
lift coefficient is much too-high to be compatible with
steady-state aerodynamics and, by taking movies at
frequency 7150 s

−1, he decomposed each downstroke,
whose frequency is about 400 s

−1, into three phases:
the wings clap at the end of upstroke, ‘fling open’
like a book, then sweep and horizontally separate
until the end of downstroke. Although the motion is
three-dimensional, Lighthill showed the same year [2]
that the lift generation can be explained using only
two-dimensional inviscid fluid dynamics. We propose to
consider Lighthill’s two-dimensional model, but using
instead viscous fluid dynamics to study how such an
unsteady motion generates vorticity, circulation, and lift
on the wings.

We perform several numerical experiments, based on
the vorticity–velocity formulation of the two-dimensional
Navier-Stokes equations computed with resolution
N = 20482, using a Fourier pseudospectral method
with semi-implicit time discretization and adaptive
time-stepping [6]. We consider a square periodic domain
and the no-slip boundary conditions on the wings are
imposed using a volume penalisation method [3], whose
convergence towards the Navier–Stokes equations with
no–slip boundary conditions has been proved in [4].

We study both double-winged and single-winged con-
figurations, each wing having a chord to thickness ratio
of 32 and flapping according to the following protocol.
Initially the wings are positioned vertically and parallel
–clap. The wings start rotating with a linearly increasing
and then smoothly decreasing angular velocity –fling.
When the angle between the wings mounts to approx-
imately 120◦, the wings smoothly start translating in
opposite directions –sweep. The hinge points coincide
during the clap and fling phases, such that initially
there is no gap between the wings. During fling the
Reynolds number, based on the chord and the maximum

tip-speed, is about 80, while during sweep it reduces to
about 20, based on the chord and the translation speed.

Fig. 1 (left) shows the vorticity of the double-winged

configuration at three successive time instants. We
observe that strong vortices are formed at the tips of
the wings (leading edges), reflecting the fact that the air
rushes in the opening, in agreement with [2]. But during
sweep, these vortices form a pair which remain localized
between the wings, generating a downward jet which
is not observed for the single wing, see Fig. 1 (left).
Another important feature is that the trailing-edge
vortices, formed when the wings separate, are of same
sign as the leading-edge vortices in contrast to [7], which
followed a slightly different scenario. This increases the
downward air flow through the opening gap, supporting
the idea of high lift generation and showing how the
circulation persists during the sweep phase.

Fig. 1 (right) presents vorticity plots for the single

wing following the same protocol. Comparison with
Fig. 1 (left) shows the importance of the topology change
involved in sweep. Overall, the single-winged config-
uration exhibits a typical unsteady-airfoil behaviour
which is radically different from the clap-fling-sweep

mechanism, where a change of topology is involved.

Fig. 2 shows the time evolution of the lift produced
by both configurations. For the double-winged configu-
ration, only the force acting on the left wing is shown.
During the fling motion the double-winged configuration
creates at least double the lift. When the wing stops
rotating the lift drops rapidly for both configurations,
which is an added mass effect. The lift recovers after
the transition and becomes an order of magnitude
higher for the double-winged configuration than for
the single-winged, confirming the fact that the high
circulation survives after the change of topology, which
results in an immediate lift (see [2]).

Following [5], local analysis of the flow near the just-
opening gap where the local Reynolds number is still
small will be given, and its implications discussed.
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Figure 1: Vorticity plots of the double-winged (left) and single-winged (right) configurations, combined with vector plots of the
velocity. Snapshots correspond to the sweep phase, at times t = 0.32 (top), 0.42 (middle) and 0.52 (bottom).

Figure 2: Lift of the double- (half-wing) and the single-winged configurations.

[2] M. J. Lighthill, 1973. On the Weis-Fogh mechanism of lift
generation. J. Fluid Mech., 60, 1–17.

[3] E. Arquis and J. P. Caltagirone, 1984. Sur les conditions
hydrodynamiques au voisinage d’une interface milieu flu-
ide - milieu poreux: application à la convection naturelle.
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