A moment model for the motion of a dipole in two-dimensional incompressible flows
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A simple model for the motion of a dipolar vortex in two-dimensional inviscid flows is proposed.
The motions of a dipole is expressed by a set of ordinary differential equations for the dipole moment,
length scale, and centroid which are derived from the conservation of mass and momentum. Using
the model, we analyze behaviors of a dipole in various background flows. Comparing results of the
model with numerical simulations of the vortex method, remarkable agreements are obtained, and

the validity of the model is confirmed.
I. INTRODUCTION

A dipolar vortex is one of the basic vortical structures
of two-dimensional flows. The dipole consists of a pair of
equal and oppositely signed vortices. In the past, dipoles
have been observed in nature such as the atmosphere or
the ocean.? The dipole translates by a self-propelling ve-
locity. This motion is considered to transport fluid mass,
heat, and so on. Hence it is important to investigate
evolution of a dipole in a background flow. Motions of a
dipole in a strain flow were studied by numerically and
experimentally.®* However, studies of a dipole in other
background flows seem to be few in literatures.

In this work, a simple model for a dipole is proposed
in order to investigate a dipole motion in various back-
ground flows. The dipole is characterized by three vari-
ables, the centroid, dipole moment and length scale. The
motions of the dipole is governed by a set of ordinary
differential equations for these variables. We name this
model as a moment model because the dipole moment
represents main features of the dipole, the strength and
translating direction.

II. FORMULATION OF THE MOMENT MODEL

We consider the motion of a dipole in the two-
dimensional incompressible inviscid flow in an un-
bounded domain. The dipole consists of a pair of equal
and opposite counter-rotating vortices with circulations
I'y in finite regions 24, where subsctips show the sign of
the vorticity. Note that 'y =T and I'_ = —I" so that the
total circulation of the dipole equals zero. The schematic
drawing of the dipole is shown in Fig. 1. The centroid
and the area of each vortex are given by xy = fQi xdS

and Sy = fﬂi dS, respectively. We consider only the
case Sy = S_ in this study.

In the moment model, the dipole is characterized by
three time-dependent variables as defined below: the cen-

troid x4, dipole moment wu, and length scale a.

Tq = (T4 +2-)/2, (1)
n= /Q:Bw(ac)dS xe, =Tz —z_)xe,, (2)
a=los — x|, 3)

where Q@ = Q4 + Q_ and e, is the unit vector in the
z-direction. Equations (2) and (3) give the magnitude of
the dipole moment, |p| = Ta.

From conservation of mass and momentum and
Kelvin’s circulation theorem, a set of ordinary differen-
tial equations for the dipole moment with length scale is
derived as
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where U = (U, Uy) is the velocity of a background flow.
The evolution equation for the centroid is also expressed
as
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where uges is the self-propelling velocity of the dipole par-
allel to p. Calculations of the family of vortex pair by
Pierrehumbert® showed that |use| varies with a. There-
fore we set |uself| to vary according to changes in a
smoothly.

FIG. 1: Schematic drawing of a dipole. Shown are two vor-
tices with regions €2+. The centroid of each vortex is denoted
by T+.



III. VALIDATION OF THE MOMENT MODEL
BY NUMERICAL SIMULATIONS

As a test calculation we consider evolution of a dipole
in a strain flow. In calculations of the model, the system
of equations (5), (6), and (7) are solved numerically. In
order to demonstrate the validity of the moment model,
the results are compared with numerical simulations of
vortex methods.® As an initial vorticity distribution for
the dipole we use the Lamb-Chaplygn dipole”™® both in
the moment model and the vortex method.

We consider two initial configurations that the dipole
is located in opposite or same direction with the strain
flow as shown in Fig. 2. calculatio results of the mo-
ment model and the vortex method are drawn together
in Fig. 3 and 4. Thick lines show the dipole moment
(arrow) and the length scale like in Fig. 1. The point at
the intersection of the dipole moment with the line of the
length scale indicates the position of the centroid of the
model. Thin lines are contours of vorticity calculated by
the vortex method. From vorticity contour in Fig. 3, we
observe that vortices of the dipole are separated by the
strain flow. On the other hand, figure. 4 shows that the
dipole is elongated and becomes deformed to the head-
tail structure.® In both cases, the centroid of the model
are located on the vorticity center. Additionally changes
in the length scale correspond to separation or elongated
behavior. In calculations with other background flows,
for example in a rotational or a shear flow, similar be-
haviors are observed. Therefore, we confirm the moment
model is valid to represent the motion of a dipole in a
background flow.

FIG. 2: Initial configurations of a dipole in a strain flow.
Streamlines of a strain flow are drawn.

FIG. 3: Evolution of the dipole in a strain flow in the case
of that the dipole located in the opposite direction with the
strain.

FIG. 4: Evolution of the dipole in a strain flow in the case of
that the dipole located in the same direction with the strain.
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