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Vortex wakes are very common. The structure and dynamics of a wake can have a significant effect on the object
forming it as well as on other objects with which the wake interacts. In order to gain a better understanding of the
two-dimensional nonlinear dynamics in the vicinity of a vortex street wake, we analyze what we call the Domm system,
four vortices in a periodic strip, all of the same absolute magnitude, two of either sign.

1. Introduction
In 1911 the seminal work of von Kármán provided the first analytic theory of the structure and stability of a vortex
street wake [8]. He first showed that a double row of vortices, with opposite vortices in the two rows, will only
propagate downstream if it is either symmetric or staggered. He then considered perturbations of these configurations
and, after a first wrong attempt, arrived at his famous criterion for the absence of linear instability of a vortex street:

sinh(
πb

h
) = 1. (1)

Here b is the separation of the two vortex rows and h is the intra-vortex spacing within each row. Kármán’s criterion
leads to b/h = 1

π log(1 +
√

2) = 0.28055 . . . . Later Dolaptschiew [3, 4] and Maue [9] generalized his result to
encompass oblique vortex streets. Several workers – we mention Dolaptschiew and Kochin, in particular – established
that even if the vortex street was not unstable to linear order, it was unstable when further nonlinear interactions were
included. In 1956 Domm considered the dynamical system of four point vortices, all of the same absolute magnitude
but two of either sign, in a periodic strip [5]. While the problem of two opposite vortices in a periodic strip suffices to
determine when a vortex street will propagate downstream and what the velocity of propagation will be, four vortices
are required to address stability. Domm carried the expansion about the vortex street relative equilibrium to second
order in the deviations from the street values, and showed that even if (1) is satisfied, the vortex street is still unstable
when second order perturbations are included. This elegant analysis, which we wish to deepen and extend, is the
reason we call the system of four vortices, all of the same absolute strength, two of either sign, in a periodic strip the
Domm system.

In general the equations of motion for N point vortices, with strengths Γα, α = 1, 2, . . . , N , in a periodic strip of
width L are [7]
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The overbar represents complex conjugation. Each zα represents an entire row of equally spaced vortices with spatial
period L, i.e., the vortices of the row are at zα+nL, n = ±1,±2, . . . and they all have circulation Γα. These equations
of motion have three general integrals: The components X and Y of the linear impulse Z,

Z = X + iY =
N∑

α=1

Γαzα, (3)

and the Hamiltonian of the system
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2.The Domm system
The Domm system is the special case N = 4, Γ1 = Γ2 = −Γ3 = −Γ4 = Γ of the above. Let z1 and z2 be the
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positions of the positive vortices, ζ1 and ζ2 the positions of the negative vortices. Analyzing this system on the infinite
plane, Eckhardt & Aref [6] showed that the transformation from z1, z2, ζ1, ζ2 to Z, Z0, Z+, Z− given by

Z =
1
2
(z1 + z2 − ζ1 − ζ2), Z0 =

1
2
(z1 + z2 + ζ1 + ζ2),

Z+ =
1
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1
2
(z1 − z2 − ζ1 + ζ2),

(5)

is canonical. Since Z is the linear impulse, and thus a constant of the motion, Z0 is cyclical. Thus, the transformed
Hamiltonian depends only on Z+ and Z− and contains Z as a parameter. Domm used the variables Z+ and Z−
in his analysis but did not realize that they represented a canonical transformation valid and useful for all values of
these variables, not just for small perturbations around the steady state represented by a vortex street. In terms of the
transformed variables the Hamiltonian takes the form
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We may, thus, study the system both in terms of the four original complex variables z1, z2, ζ1, ζ2, i.e., in an 8-
dimensional space, and in terms of the two variables Z+ and Z− with Z as a parameter. The latter representation
“lives” in a four-dimensional space, and has H as a conserved quantity. Hence, system trajectories may be represented
in a three-dimensional space.

We may also use this representation to find initial conditions with the same values of the integrals Z and H and
to explore the vicinity of the Kármán vortex street configuration using such initial conditions. For a vortex street
configuration we get with our earlier notation that Z+ = −h, Z− = 0, whereas Z = −h

2 − ib. Perturbing Z+ and Z−
arbitrarily and then reconstructing z1, z2, ζ1, ζ2 from the inverse relations to (5) leaves the value of Z unaltered. To
preserve H we need to assure that

H(Z+, Z−;Z) = H(−h, 0;−h

2
− ib), (7)

and this equation can be solved for Z+ and Z− and the vortex coordinates reconstructed. We may then check that
the perturbation in real space of the vortex positions away from the vortex street configuration is not too large. In this
way we obtain initial conditions with the same linear impulse and kinetic energy as the vortex street, yet perturbed
away from that configuration. We study the numerical evolution of these perturbations by high precision numerical
simulations.

When the criterion (1) is satisfied, we find that the vortices initially oscillate many times about the vortex street
configuration. These oscillations increase in amplitude until the vortices come so close to opposite-signed partners
that they pair up and fly off to infinity. The oscillations are in accord with investigations by Dolaptschiew 70 years
ago [3, 4], who derived an approximate dynamical system for perturbations close to the von Kármán vortex street
and studied its solutions by numerical hand computations. The phenomenology of vortices from opposite sides of
the street pairing up and flying off to infinity is consistent with earlier observations in numerical simulations [1]
and experiments [2]. A new observation, reminiscent of the chaotic scattering discussed in [6], is that the pairing
up is extremely sensitive to initial conditions, i.e., to the perturbation used. We have codified this by considering
which vortices pair, and we find that the pairing can take place with different partners from the opposite row both
upstream and downstream. Thus, although the short-time dynamics is basically insensitive to small changes in the
initial conditions , the long-time dynamics of pairing is extremely sensitive. This may indicate that the Kármán vortex
street configuration is a chaotic saddle point of some kind in the phase space of the Domm system. We are currently
exploring this question.

This work is supported by a Niels Bohr Visiting Professorship at the Technical University of Denmark sponsored by
the Danish National Research Foundation.
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