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Many marine zooplankters, particularly among copepods, are “am-
bush feeders” that passively wait for their prey and capture them by
fast surprise attacks. This strategy must be very demanding in terms
of muscle power and sensing capabilities, but the detailed mecha-
nisms of the attacks are unknown. Using high-speed video we
describe how copepods perform spectacular attacks by precision
maneuvering during a rapid jump. We show that the flow created by
the attacking copepod is so small that the prey is not pushed away,
and that the attacks are feasible because of their high velocity
(=100 mm-s—") and short duration (few ms), which leaves the prey
no time for escape. Simulations and analytical estimates show that
the viscous boundary layer that develops around the attacking
copepod is thin at the time of prey capture and that the flow
around the prey is small and remains potential flow. Although
ambush feeding is highly successful as a feeding strategy in the
plankton, we argue that power requirements for acceleration
and the hydrodynamic constraints restrict the strategy to larger
(> 0.25 mm), muscular forms with well-developed prey perception
capabilities. The smallest of the examined species is close to this
size limit and, in contrast to the larger species, uses its largest
possible jump velocity for such attacks. The special requirements to
ambush feeders with such attacks may explain why this strategy
has evolved to perfection only a few times among planktonic
suspension feeders (few copepod families and chaetognaths).
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arine suspension-feeding zooplankton must concentrate

dilute microplankton prey from a viscous environment,
and they typically need to clear huge volumes of water (103 times
their own volume every hour) to cover their needs (1). Two main
food collection strategies have evolved: active cruising or gen-
eration of a feeding current by the beating of feeding append-
ages, cilia, or flagellae, and capture of prey that arrive in this
current (2-4) or passive ambush feeding, where passing prey are
detected and captured in surprise attacks (5-7) or as they collide
with feeding structures (8). The former strategy occurs among all
zooplankton taxa and size classes, from few wm-sized hetero-
trophic nanoflagellates to centimeter-sized krill and larger ge-
latinous forms (2-4). In contrast, ambush feeding with active
prey attack is restricted to larger individuals and a few taxonomic
groups, mainly chaetognaths and among copepods (mostly cy-
clopoidea), both of which are highly successful in terms of both
omnipresence and high abundances (6, 9).

There are many potential advantages of ambush feeding over
active prey encounter strategies. Ambush-feeding zooplankters
have reduced encounters with predators, and they do not need
to spend energy for swimming. These are the likely explanations
that obligatory ambush-feeding copepods such as Oithona spp.
have an order of magnitude lower metabolic rates (10, 11) and
experience much lower mortalities in the ocean than similarly
sized, co-occurring copepods that have more active feeding
strategies (12). These are substantial fitness advantages. Why,
then, is ambush feeding with active prey capture essentially
restricted to a few taxonomic groups?
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The hydrodynamics of the diverse mechanisms of prey capture
in both protistan and metazoan feeding-current feeders have
long been rather well resolved (2, 13). In copepods, for example,
detection and capture of prey entrained in the feeding current
has been described by using high-speed cinematography of
tethered individuals: Prey are perceived remotely by using
chemical signals, and the feeding current is redirected such that
the detected prey comes within reach of the second maxillae
(one of the feeding appendages) that captures the prey (13, 14).
It is well documented that ambush-feeding copepods sense their
prey remotely by using the hydrodynamic disturbances generated
by the swimming prey and that the forward attack jump is faster
than what can be resolved by 25- to 30-Hz video (7, 15, 16).
However, it is unclear how the copepod avoids pushing the prey
away as it attacks and avoids warning the prey by the hydrody-
namic disturbance that the forward lunge creates. Many motile
protists have the capability to sense and escape fluid deforma-
tion signals (17). However, capture efficiencies must be high,
because observed clearance rates in, e.g., ambush feeding
Oithona spp. (18, 19) accord well with those predicted from
encounter models and known perception capabilities (20).

In this study we report direct high-speed video observations of
prey attack and capture in small (<1 mm) free-swimming,
ambush-feeding copepods. We show that attacks are successful
and feasible because of their rapidity and precision and argue
that hydrodynamics and power requirements limit the strategy to
copepods and a few other groups in the plankton with muscular
capabilities that are not found in any other invertebrates.

Results

We recorded prey attacks and escape jumps in two species,
0.8-mm Acartia tonsa and 0.3-mm Oithona davisae, with high-
speed video. O. davisae is a mandatory ambush feeder (19),
whereas A. tonsa can switch between the two feeding strategies
(5). Although details differed, the sequence of events was very
similar for the two species (see Movies S1 and S2). Prey attacks
are elicited when a swimming prey comes within ~0.2 mm of the
first antenna (Fig. 1 and Table 1). In the typical attack, the
copepod jumps toward the prey by sequentially striking the three
or four posterior swimming legs backwards (ignoring the rudi-
mentary fifth swimming legs in A. fonsa). This action pushes the
copepod forward, by up to one body length and to a peak velocity
of ~100 mm-s~! within a few milliseconds (Fig. 2 and Table 1),
and positions it such that it has the prey about % body length
ventral to the feeding appendages (Fig. 1). This position is
independent of the position of and distance to the prey at
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Fig. 1.
ms apart), and positions of copepod and prey immediately before (in white) and after (in black) the forward jump (B-D). The duration of the jumps are indicated.
Note how the copepod may reorient during the attack, and how the prey hardly moves.

detection. To achieve this, the copepod steers by means of the
urosome (the “tail”’) and the first antennae during the forward
lunge and may demonstrate a fantastic maneuverability. In one
instance, A. tonsa turned its body-axis 180° and further rotated
90° around its body-axis during the strike.

A striking feature of the attacks is that the rapid forward lunge
of the copepod normally does not create a fluid disturbance that
significantly displaces the prey (Fig. 1); the prey remains almost
unaffected by the motion of the copepod until the feeding basket
opens and the prey is accelerated toward the mouth (Fig. 2). The
average displacement of the prey during the attack jump corre-
sponds to only 3-4% of the body length of the copepod and
ranges up to 8% in the larger species and 13% in the smaller
(Table 1 and Fig. 1). The unsuccessful attacks included the
largest prey displacements.

In direct continuation of the strike the copepod flings out the
feeding appendages to capture the prey. In A. fonsa, the first
swimming legs strike back while the second antennae sweep
forward, and the mandibles and 2 sets of maxillae with their long

Table 1. Statistics of prey attacks in A. tonsa and O. davisae

Prey capture in A. tonsa (B and C) and O. davisae (A and D). Time series of still images (4) with frame numbers indicated (consecutive frames are 0.5

setae are open, thus together creating a flow that sucks in the
prey (Fig. 2). The feeding appendages then reverse, thus enclos-
ing the prey. O. davisae captures the prey by the second maxillae
and the maxillipeds that stretch out immediately after the
forward lunge (Fig. 14), creating a suction that accelerates the
prey to within reach of the feeding appendages. In both species,
the prey accelerates in the capture flow to a speed of ~10 mm-s™!
in 2-4 ms over a distance of 50-100 wm. In A. fonsa >1 fling is
often required before the prey is captured, up to 7 and on
average 2.5 flings, and the number of flings and the time to
capture are directly correlated to the postjump distance to the
prey (P < 0.1% in both cases). O. davisae mostly captures the
prey in the first fling, although one case required 3 flings
(average 1.3 flings). During these attempts the prey is moved at
a high velocity that fluctuates with the beating of the appendages
(Fig. 2 B and E), but there is no apparent further adjustment of
the position of the copepod in response to the changing position
of the prey. Hence, some prey are lost. During the postjump
flings, the swimming legs are kept together but move back and

A. tonsa O. davisae
Average

Property Average (range) SD n (range) SD n
Size of copepod (Prosome), mm 0.81 0.04 60 0.32 0.01 60
Detection distance (distance of prey to first 0.11 (0-0.21) 0.07 21 0.12 (0.03-0.38) 0.09 22

antenna), mm
Jump distance, mm 0.24 (0-0.68) 0.16 20 0.18 (0-0.47) 0.1 21
Distance to mouth after jump, mm 0.18 (0-0.29) 0.05 20 0.09 (0.05-0.14) 0.03 18
Prey displacement during attack jump, mm 0.022 (0-0.064) 0.017 18 0.012 (0-0.041) 0.011 18
Duration jump (detect to open feeding 6.8 (4.2-15.3) 2.8 19 5.1(2.1-31.3) 6.4 19

appendages), ms
Duration (detect-capture), ms 32 (7-107) 28 15 9 (2.6-29.5) 7 18
Capture success 0.75 20 0.86 21
Kigrboe et al. PNAS | July 28,2009 | vol.106 | no.30 | 12395
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Fig.2. Kinematics of prey attacks in A. tonsa (A-C) and O. davisae (D-F) described by the temporal variation in the position of the tips of various appendages
(relative to a coordinate system that has the tip of the head as origin and the z axis aligned with the body axis) and in the velocity of the copepod and its prey
particle (relative to a fixed coordinate system). Arrows in B and E indicate final capture of prey. The position of the second maxil in A. tonsa (C) is given as the

y-coordinate; z-positions are given for all other appendages.

forth, in counter phase with the feeding appendages, thus
reducing the forward motion of the copepod that the beating
feeding appendages would otherwise cause (Fig. 2 A and D).

We observed a few escape jumps in both copepod species.
These are similar to attack jumps in that the 4 functional
swimming legs beat sequentially backwards, the posterior legs
first, followed by the joint recovery of the legs. Several such beat
cycles and groups of beat cycles may follow one another. During
the power stroke, A. tonsa accelerates from 0 to up to 4-500
mm-s~! in 4 ms, and O. davisae accelerates from 0 to up to 120
mm-s~! in 4 ms. Thus, peak velocities during escapes are much
higher than attack speeds in the larger species, whereas the
smaller species seem to use their maximum jump speed during
attacks.

Discussion

The movement of the feeding appendages and the actual capture
of the prey described here is very similar to that described for
copepods that generate feeding currents (13), but the prey
encounter mechanisms differ. During the attack-jump the prey
is typically displaced insignificantly, which is key to a successful
attack (Fig. 1 and Table 1). We argue that the flow in the vicinity
of the prey can be approximated by potential flow and that the
viscous boundary layer surrounding the moving copepod is thin.
Viscosity is ignored in potential flow and the disturbance created
by a moving body is solely caused by water pushed away to allow

12396 | www.pnas.org/cgi/doi/10.1073/pnas.0903350106

room for the translating body; it hence decreases with the inverse
cube of the distance to the body. As the copepod accelerates
from rest, the thickness of the viscous boundary layer grows
diffusively as 8 ~ (vr)"/2, where v is the kinematic viscosity and
tis time (21). One could therefore expect that the duration of the
jump determines the maximum boundary layer thickness, but it
turns out that the jump kinematics puts an important constraint
on the problem. Assuming constant acceleration in a jump of one
body length, L, and duration 7, the peak velocity of the copepod
is Upmax = 2L/T, which implies that the boundary layer thickness
during the attack grows to 8 ~ (vT)V? = (2Lv/U,,x)"?, which is
similar to the thickness that would be found if the body was
moving with constant velocity U,,.x. Thus the relative boundary
layer thickness at the end of the attack jump is characterized
solely by the maximum Reynolds number Re = LU,,,x/v and
decreases with increasing Reynolds number as §/L ~ Re /2
(Because feeding appendages scale with L, it is the relative
distances that matter.) Simulated flow fields generated by an
idealized attack jump show that the boundary layer thickness is
almost constant on the anterior part of the body (Fig. 3B)
because of the rearward acceleration of the fluid outside the
boundary layer from the front stagnation point. The Reynolds
numbers for the two examined species varied between 30 and
100. The typical position of the prey at the end of the attack jump
is well outside the boundary layer for Reynolds numbers larger
than a critical value Re, somewhere between 10 and 100 (Fig. 3

Kigrboe et al.
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A and B), and the estimated displacement of prey therefore
corresponds to <10% of the body length of the attacking
copepod, consistent with observations (Table 1). In the regime
Re > Re,, potential theory should be applicable, and we have
computed the corresponding prey displacements by using pure
potential theory, where the copepod is represented as a sphere
(see SI Appendix). The prey displacement only depends on the
initial and final positions of the copepod and not on the details
of the motion. The results are indeed similar to the simulations
at large Re and we have obtained an analytic expression valid for
small displacements. For a copepod making a jump of 1 body
length along a fixed axis, a prey particle in the equatorial plane
of the sphere, at a distance s from the axis will be displaced
approximately d = 0.5 L(s/L)~2, which thus decays rapidly with
distance.

The requirement for high acceleration and velocity during the
attack jump restricts the strategy to larger forms. This follows
from an analysis of power requirements for rapid jumps: The
mass-specific power production required to jump with a given Re
scales with L=* (see SI Appendix). The muscle-mass-specific
power production in jumping copepods is much higher than
reported for other invertebrate groups and similar to the highest
estimated for vertebrates and it is roughly size independent (see

Kigrboe et al.

Displacement of passive prey particles between the beginning and end of an attack jump (A) and vorticity (indicative of boundary layer) around the
model copepod at end of jump (B) for different Reynolds numbers. In the simulations the Navier-Stokes equations are solved in an accelerated reference frame
modeling the kinematics of the jump without taking into account the specific swimming leg movements generating the thrust. Typical prey positions at end of
jump are indicated by circles. The length of the simulated attack jump is 1 body length; shorter attack jumps yield shorter prey displacements.

SI Appendix and refs. 22 and 23); there will therefore be a critical
lower size limit for effective attack jumps where Re. is reached.
The same follows from empirical data: At peak performance,
assessed from escape jumps in copepods, acceleration and
maximum velocities both scale approximately with L%¢ and
hence the relative thickness of the boundary layer scales with
8/L ~ L~%8 and increases dramatically for copepods smaller than
~1/4 mm (Fig. 4). Thus, the small O. davisae is close to this
critical size and must use its maximum potential during attacks,
in contrast to the larger A. fonsa that may escape substantially
faster (500 mm-s~!) than it attacks (24).

Many motile microplankton prey, both copepod nauplii and
protists, are capable of perceiving and escaping fluid distur-
bances; they react to fluid deformation rates >1-5 s~! by
escaping at velocities of up to 1 cm+s™!, which allows them to
escape typical zooplankton feeding currents (17, 25). At the
typical position of the prey, deformation rates computed from
our simulation exceed 5 s™! at Re = 10 at the end of the attack
jump and the prey is thus warned. However, the duration of
signals exceeding a threshold of 1 s~! is rather short, for example
at most 6 ms for the smallest and 13 ms for the larger of our two
examined species. During this time the prey may at worst escape
a distance of 0.06 and 0.13 mm, respectively, corresponding to

PNAS | July 28,2009 | vol. 106 | no.30 | 12397

ECOLOGY


http://www.pnas.org/cgi/data/0903350106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0903350106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0903350106/DCSupplemental/Appendix_PDF

Lo L

\

o LN A D

-1

—_—
o
o
o

Velocity, mm s

100

1.5

1.0

o/L

0.5

0.0
0.0 0.5 1.0 1.5 20

Copepod length, mm

Fig. 4. Escape velocities (U) of copepods (A) regressed against body length
(L) [U = Up (LILp)°6, with Ug Ly %6 = 4102 mmO%4s~1] is used to estimate the
relative boundary layer thickness (§/L ~ Re~"2) as a function of copepod size
(B). Escape velocities include those reported here and data from the literature
(22, 24, 28, 30-33). The observed velocity exponent reflects the intermediate
Reynolds numbers for escaping copepods. At low Reynolds number (linear
drag) we would expect a linear dependence on L, and at high Reynolds
number (quadratic drag) we would expect that the maximum velocity is
independent of L because muscle force scales as L2

=20% of predator body length, provided instantaneous prey
reaction [latency times in protists may be 1-10 ms (26)]. Smaller
or slower attackers may allow prey sufficient time to escape
longer relative distances and hence this aspect also restricts the
strategy to larger forms.

A final key to a successful attack is exact 3D information on
the position of the prey. Copepods are blind and use the
mechanosensory setae distributed on the first antenna to per-
ceive motile prey in the water (15). Such a sensory arrangement
permits exact 3D determination of the position and velocity of
the prey (16). During the forward lunge, which lasts only a few
milliseconds, the copepod is unlikely to receive new information
on the position of the prey, because the transmission time of
signals through the antenna is 2-10 ms (27, 28), similar to the
duration of the attack jump. The copepod also does not seem to
readjust to the changing position of the prey during the postjump
capture attempts, where any fluid signal from the swimming prey
is likely overridden by the complex flow generated by the beating
appendages. Thus, the precision of the initial strike is essential.

Common for the two taxonomically distant groups of zoo-
plankton that hold most of the zooplankton ambush feeders with
active prey attack is that they both have very well-developed prey
perception capabilities with similar spatial arrangements of
mechanosensory setae (29). The streamlined arrow- or torpedo-
shaped bodies of chaetognaths and copepods and the unusually
powerful musculature of at least copepods (22, 13) allow for the

1. Hansen PJ, Bjernsen PK, Hansen BW (1997) Zooplankton grazing and growth: Scaling
within the 2- to 2,000-um body size range. Limnol Oceanogr 42:687-704.

2. Fenchel T (1986) The ecology of heterotrophic microflagellates. Adv Microb Ecol
9:57-97.

3. Flood PR (1991) Architecture of, and water circulation and flow rate in, the house of
the planktonic tunicate Oikopleura labradoriensis. Mar Biol 111:95-111.

4. Dalpadado P, Yamaguchi A, Ellertsen B, Johannessen S (2008) Trophic interactions of
macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea.
Deep Sea Res Il 55:2266-2274.
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fast attack jumps that are essential to high prey capture success. Fish
larvae, while not ambushers, also capture prey by rapid surprise
attacks and share many of the same features. These necessary
features are not found in other planktonic groups. The restrictive
requirements to the body plan of a planktonic ambush feeder with
surprise attacks may help explain why this strategy, although highly
successful, has evolved to perfection only a few times.

Materials and Methods

Experimental Organisms. The copepods were supplied from continuous labo-
ratory cultures. As motile prey in the experiments we used the dinoflagellate
Oxhyrris marina for O. davisae, and ciliates, Strombidium sulcatum, for A.
tonsa. O. marina measures 18 (SD = 3) um in diameter and swims at ~0.37
(SD = 0.09) mm-s~" and S. sulcatum measures 27 (SD = 2) um in diameter and
swims at ~0.59 (SD = 0.15) mm-s~".

Observations and Experiments. Recordings were made with a Phantom v4.2
Monochrome high-speed digital video camera operated at frame rates of
1,600-2,200 frames per s, a resolution of 512 X 512 pixels, and of storage
capacity of 2,000 frames. Observations of attacks were made in 69 mL aquaria
with copepods and protists added. The camera lenses yielded a field of view
of ~3 X 3 or 1.4 X 1.4 mm2. Observations of escape jumps were made in 1L
aquaria at lower magnification. Illumination to provide shadow images was
provided by a 50-W halogen bulb. All experiments were conducted at room
temperature. We recorded 22 attacks and 3-6 escapes in each species. All
attacks were recorded from various angles, and none of the records allowed
us to see all details.

Kinematic Description of Prey Attacks. The attacks that revealed most details
(6 for A. tonsa and 3 for O. davisae) were analyzed thoroughly, whereas only
selected parameters were extracted from the remaining attacks. Using share-
ware ImagelJ (manual tracking) we digitized frame-by-frame the position of
the copepod (tip of head, end of body) and the position of the tips of the
urosome, each of the feeding appendages (that could be seen), the 4 anterior
swimming legs (the fifth swimming leg is rudimentary in A. tonsa, and
O. davisae has only 4 pairs of swimming legs), and the position of the prey.
The position of the urosome and appendages were subsequently transformed
into a coordinate system that had the tip of the head as origin and the z-axis
aligned with the length direction of the body. Velocities were computed on
basis of the trajectories. All distances are 2D projections of 3D distances and
therefore underestimated.

Simulations. We modeled the body of the copepod as an ellipsoid of major axis
L and minor axis W = 2/3L. It was moved along the z-axis over a distance equal
to its body length L, and the duration of the jump was T (Fig. S1). Its motion
was prescribed with the assumption of a constant acceleration, a = 2L/T2.
Velocity and vorticity fields were computed by solving the Navier-Stokes
equations using the commercial software Comsol. The equations were solved
in the accelerated reference frame of the copepod and in cylindrical polar
coordinates (s, z, ¢). The time step was dt = 7/200. A no-slip boundary
condition was applied at the ellipsoid surface. The ellipsoid was placed at the
center of a cylindrical domain of height 30L and radius 15L. On the external
walls of the domain, the s- and z-components of the velocity had to satisfy
us = 0 and u; = —U(t). The prey was assumed neutrally buoyant and passive,
and therefore to follow the particle paths. Trajectories of tracers initially
placed on a regular grid were computed by integrating the velocity field at
each time step. We computed the deformation field from the strain-rate
matrix, which was interpolated at each time step and then diagonalized.
From the 3 eigenvalues A;, i = 1, 2, 3, we defined the scalar deformation rate
as: emax = Max(IAql,1A21,1A31).
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Fig.S1. The model copepod performing a jump of 1 body length, L. The initial (light gray ellipsoid) and final (dark gray ellipsoid) position of the copepod, and
the typical position of the prey at the end of the jump are indicated.
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Movie S1. Examples of A. tonsa attacking motile ciliates, Strombidium sulcatum, played in slow motion at 1/270 real time. During the forward jump, the
prey remains almost stationary (the swimming of the prey is negligible at this time scale). In many cases the copepod does not manage to capture the prey in
the first attempt with the feeding appendages, and the prey is moved around by the beating feeding appendages until eventually captured (or lost). The imposed
velocity of the prey during this period by far exceeds its escape jump capacity.

Movie S1 (MQOV)
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Movie S2. Examples of O. davisae attacking motile dinoflagellates, Oxhyrris marina, played in slow motion at 1/270X real time. In this species, the prey is almost
always captured in the first attempt. Note again that the prey does not move significantly during the forward lunge of the copepod.

Movie S2 (MOV)

Other Supporting Information Files

Sl Appendix (PDF)
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POTENTIAL FLOW

We here show that potential theory provides a good description of the flow field around the
copepod at the typical position of the prey, as its predictions compare well to both the results of the

full simulations (Fig. 3) and the observations (Table 1).

For simplicity we shall represent the copepod as a sphere with radius R chosen as the half minor
axis of the ellipsoid, i.e., R =W /2, so the major axis of the ellipsoid is L = 3R . The center of the
sphere r. moves with velocity U(t) = r.'(¢) . For motion along the positive z-axis, the velocity field is
given as the gradient of the velocity potential (1)

sr.0.6= -2 )2R3 cos@ S1)
2r

where 7 and @ are spherical coordinates around the instantaneous center of the sphere r, . Note that

the velocity potential (and therefore the entire velocity field) is proportional to the instantaneous
velocity and independent of the acceleration. Potential theory is valid as long as the flow has no
vorticity and this is true at short time scales and high Reynolds numbers since we assume that the
sphere moves into quiescent fluid and the boundary layers do not reach into the region of flow
considered. It should be noted that the description in terms of potential theory would not work well
for the flow behind the copepod, since here the flow would be progressively disturbed by separating

boundary layers and the effects of the swimming legs would be significant.

A small, neutrally buoyant prey particle in the fluid satisfies the equation of motion

ﬂ_ Or -
= UV =r0) (S2)



where V© is the velocity field for a sphere at the origin moving with unit velocity along the z-axis.

In cylindrical coordinates (s,z) we can write

> = U V(5,2 - 2,(1)

il
dt (S3)
% =U@W(s,z—z.(1))

dt o

and we are interested in determining the displacement of a particle from its original

position (s,,z,)to its final position (s(z,), z(¢,)), i.e., d = \/(s(tf) —50)" +(2(t,)— z,)* . Using

x =z -z(t)as independent variable instead of time this can be written

ds 0 3R’ Xs
_:_Vi )(S,)C):— 2
dx 2 (s —i—xz)S
3 2 2 (S4)
dz ) R 2x -5
=V (X)) E
dx 2 (s*+x )5

where now U(#) = z_'(t) has dropped out and the displacements thus only depend on the length

that the sphere moves, not on the details of the time history. This is typical of potential flow.

In analogy to the ellipsoidial model, the prey is assumed to be in the equatorial plane of the sphere

in the final position, i.e., z, = L = 3R and at a distance L/4 from the surface, i.e., s, =1.75 R. For
this configuration we get the displacements
As ~ 0.1267R, Az~ ~0.0279R and d = ((As)* + (Az)* ) ~ 0.1207R=0.0432L (S5)

The simulation for the ellipsoid above gives d = 0.0525L at Re=1000, and the correspondence is

quite good considering the spherical approximation.

To get an approximate analytical expression for the displacements we exploit the rapid decay of the

velocity field away from the center of the sphere, which means that we get a reasonable



approximation by neglecting the small variations of s and z on the right hand side of Equation (S4).

This makes the system integrable and we find

R’s R’s
As = S(xf)_so = 5 : SN2 5 02 3/2
2so+(zo—xf))l 2s0+zo)
R(z,—x,) R’ (56)
Az=z(x;)—z, = L 7 %

2 2
2 Sg+(zo—xf)2)1 2 S§+Z§)3
For x, = z,, i.e., the situation where the prey is in the equatorial plane in the final position we get

R’ R’s,
2 2 2 2\/2
So 208y + 25
3
Rz,

N 72
2 2
245, +zo)3

(S57)
Az =

which means that the displacement d =+/As”® + Az* can be expressed in terms of s, and

_ 2 2
Ty =+/Sy +2, as

d:%(l_z%v{%n [%)3%{1—2(%3{‘;—2}4} (S8)

For our standard configuration (s, =1.75R and z, = 3R)) this gives As = 0.1424R,

1/2

Az = —0.0358R and d = 0.146831R = 0.04894 L , not far from the results in Equation (S5).

The strain-rates are readily computed in potential theory. Due to rotational symmetry the strain rate

tensor is given by

o N
£= L 0 &, 0= 0 . 0 (S9)
852 0 822 l(avz %) 0 8\/2
2\ 0s 0Oz 0z



For a prey-particle at position (s,z) with distance 7 = +/s> +z* (all measured from the position of
the sphere moving at velocity U') the instantaneous eigenvalues for the strain rate tensor

arc

4
4r r r

R LIENE
(S10)

3z
&y = (]R3 E

The magnitude of the strain rate in the equatorial plane of the sphere (z = 0), where &,=¢; and &3;=0,

1s

3UR’
E= S11
2st (S1D)
The maximal velocity entering this expression is, assuming constant acceleration,
2L 6R
v=U, , ~—=— (S12)
T T
where T is the duration of the attack, and the maximum strain rate at s =1.75 R is
9 0.96
&~ ~— (S13)

For at typical value 7= 10 ms we get & ~100 s™'.

max

POWER REQUIREMENTS FOR RAPID JUMPS
A rough estimate of the average power required for rapid jumps can be achieved as follows. During
the jump, the force which the copepod must produce to accelerate and overcome drag is

F=(3/2) m (dU/dt) + D, (S14)
where the first term takes the added mass effect into account (m is the copepod mass and U is the
copepod velocity), and the 2™ term is the drag force. We model the copepod as a sphere and take

D=(1/2) n p R* Cp U?, where R is the radius of the copepod, p is its density, and



Cp=24/Re+5/Re"?+2/5 (2). We assume constant acceleration of an attack jump of 1 body length, L
= 2R, of duration 7T and to a maximum velocity U,,.. The average power integrated over the power

stroke of the jump is then

17 3mU; 4 5 1
P=—|FOUWdt=——= 4+ 7 pR*U> | — — |
T! OU () i P

+—t
™ Re 74JRe 20 (S15)
Recalling that U,,,, = 2L/T the mass specific average power P* = P/m is then
P*_3Ujm 4.5 3
4R \Re 7+/Re 10) (S16)

To achieve a given Reynolds number (Re =2 R Unay/v) in the jump, it follows that the mass specific
power scales with size as

* -4
P oL (S17)

where L = 2 R. Thus, power requirements for attack jumps increase dramatically with declining

size of the predator.
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