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The idealization of a two-dimensional, ideal flow as a collection of point vortices
embedded in otherwise irrotational flow yields a surprisingly large number of math-
ematical insights and connects to a large number of areas of classical mathematics.
Several examples are given including the integrability of the three-vortex problem,
the interplay of relative equilibria of identical vortices and the roots of certain
polynomials, addition formulas for the cotangent and the Weierstral { function,
projective geometry, and other topics. The hope and intent of the article is to garner
further participation in the exploration of this intriguing dynamical system from the
mathematical physics community. © 2007 American Institute of Physics.
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I. INTRODUCTION

Some years ago, after a talk at the Newton Institute for Mathematical Sciences in Cambridge
about point vortex dynamics, a member of the audience, a Russian mathematician and mathemati-
cal physicist, commented that this was an example of a “classical mathematics playground.” The
characterization, which has stuck in my mind, contains more than a germ of truth as I hope to
illustrate in this article. Somehow, in the problem of point vortex dynamics many strands of
classical mathematical physics come together. Of course, one encounters the theory of dynamical
systems, of systems of ordinary differential equations (ODEs), Hamiltonian dynamics, potential
theory, and several other topics that one might think of as “expected.” But there are also
unexpected—or less expected—connections to subjects such as projective geometry, to aspects of
the theory of polynomials, to elliptic functions (when the vortices are in periodic or bounded
domains), and to pole decompositions of some of the integrable partial differential equations [such
as Burgers’ equation and the Korteweg—de Vries (KdV) equation]. Applications of even more
exotic objects such as the Schwarz function'” and the Schottky-Klein prime function® have
appeared. In recent years we have understood how to apply Thurston-Nielsen theory to the motion
of point vortices'” and to the mixing that they induce of the surrounding fluid."* T am sure there
will be many more such connections that serve, on one hand, to introduce new bodies of math-
ematical knowledge into applications (to the extent point vortex dynamics can rightfully be called
“applications”) and, on the other hand, to give physical motivation to certain mathematical con-
cepts and theorems. Some of us, including I suspect many readers of this journal, find such
physical motivation to be both useful and helpful. In this article my goal is to illustrate some of
these avenues of investigation. I cannot possibly illustrate them all to any degree of completeness
without turning the article into a monograph, but the examples and the bibliography will, hope-
fully, whet the reader’s appetite sufficiently to continue the explorations. I submit that there is
much beautiful, interesting, and useful mathematical physics still to be uncovered.

YElectronic mail: haref@vt.edu

0022-2488/2007/48(6)/1/23/$23.00 48, 1-1 © 2007 American Institute of Physics



1-2 Hassan Aref J. Math. Phys. 48, 1 (2007)

Il. THE BASIC DYNAMICAL EQUATIONS

The equations of motion of interacting point vortices were introduced by Helmholtz* in a
seminal paper published in 1858, squeezed in between his equally seminal—and maybe in the
long run more important—work on the physics of sound and the physiology of hearing. The paper
on vorticity and vortex dynamics was entitled “Uber Integrale der hydrodynamischen Gleichun-
gen, welche den Wirbelbewegungen entsprechen” (“On integrals of the hydrodynamical equations,
which express vortex-motion” in Tait’s 1867 translation). In this paper27 Helmbholtz was the first to
elucidate key properties of those portions of a fluid in which vorticity occurs. Although the
investigation was motivated, at least in part, by an interest in the effect of friction within a fluid,
the theory developed is restricted to the dynamics of an ideal, incompressible fluid with “embed-
ded vorticity”—as we would phrase it today. Helmholtz showed that in such a substance vortex
motion could neither be produced from irrotational flow nor be destroyed entirely by any natural
forces that themselves have a potential. If vorticity exists within a group of fluid particles, in the
inviscid limit they are incapable of transmitting it to particles that have none. Conversely, the
particles that have vorticity cannot be entirely deprived of it, although the vorticity of any indi-
vidual particle may change in three-dimensional (3D) flow by the all-important mechanism of
vortex stretching. In two-dimensional (2D) flow of an inviscid fluid, on the other hand, the
vorticity of each particle is a constant of the motion. For an ideal fluid, then, the laws of vortex
motion establish a curious, invariable linkage between fluid particles and their state of rotation.

Towards the end of his paper, in Sec. V entitled “Straight parallel vortex-filaments” (in Tait’s
transation), Helmholtz introduces the point vortex model and considers some of its most imme-
diate consequences. In this model one envisions that the vorticity is confined to a set of infinitely
thin, straight, parallel vortex filaments each of which carries an invariant amount of circulation.
Equivalently, one can trace the points of intersection of this family of filaments with a plane
perpendicular to all of them. These points of intersection are known as point vortices. One may
think of them as playing a role in ideal hydrodynamics similar to that played by point masses in
celestial mechanics. Point vortices only exist in 2D flow. Since the 3D vorticity field is divergence-
free, such vorticity “monopoles” cannot exist in 3D flow. Attempts to come up with suitable
generalizations, e.g., Novikov’s “yortons,”*’ which may be thought of as infinitesimal vortex
rings, have not met with broad acceptance.

The equations of motion for N interacting point vortices on the unbounded xy plane, with
vortex a=1,...,N having circulation or strength I, and position (x,,y,), consist of the following
2N first-order, nonlinear, ODEs:

N N
dx 1 r - d 1 r -
Ha__ LSV (YVa=Yp) ﬁ:_er a=1.2. ... .N. (1)

de — 2mpn LBy dt 2wy Ly

where li3=(xa—xﬂ)2+(ya—yﬁ)2, and the prime on the summation indicates omission of the sin-
gular term = . Typically, an initial value problem is addressed with the initial positions of the
vortices and their strengths given so as to represent some flow situation of interest, where for
classical fluids “represent” is to be understood in the sense of providing an approximate model. In
superfluids vortices have cross sections of atomic dimensions—and quantized circulations—so
Eqgs. (1) provide an excellent basis for macroscopic flow considerations and give a quantitatively
accurate representation of 2D flow of such a fluid. The physical content of Egs. (1) is that each
vortex sets up about itself a circumferential velocity field of magnitude I',/27r, where r is the
distance from that vortex, and that any one vortex is advected by the combined velocity produced
by all the other vortices, i.e., its velocity at any instant is equal to the vector sum of the velocities
produced at its position by all the other vortices.

If the plane in which the motion takes place is thought of as the complex plane, system (1)
may be also written elegantly as N ODEs for N complex positions of the vortices z,=x,+1y,:
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N
d 1 r
il/:_ ,_L3 a:1325-"7N’ (2)
dr - 2migs 24— 28

where the overline denotes complex conjugation.

The point vortex equations [Egs. (1)] may be thought of as a discretization of the continuum
equations for 2D inviscid flow—commonly referred to as the Euler equations—that is useful both
for analytical and numerical approximation purposes. The relevance and adequacy of this corre-
spondence is itself the subject of an extended literature dealing with issues of convergence and
accuracy over time. The reader interested in such issues may wish to consult the book by Mar-
chioro and Pulvirenti.” Our viewpoint in this article will be to treat Eqs. (1) or (2) as an inter-
esting dynamical system in its own right and proceed from there. This also implies that we shall
not pursue extensions of Egs. (1) to bounded domains or to surfaces other than the plane (the
sphere being the surface of particular interest), although we shall briefly consider vortices in
periodic domains. The extension of the basic dynamical equations of point vortices to bounded
domains was considered in two short papers by Lin,*** later published as a monograph.34 This
theory has recently been revisited by Crowdy and Marshall’™*! who show that the Hamiltonian
may be given explicitly for a multiconnected domain in terms of the Riemann mapping function of
that domain onto a topologically equivalent domain with all boundaries being circles and the
Schottky-Klein prime function associated with this set of circles.

Several investigators seized upon Helmholtz’s new model for 2D flow. In his influential
lectures on mathematical physics (see Ref. 29, Lecture 20) Kirchhoff demonstrated that system (1)
may be restated in Hamilton’s canonical form:

Fa%=ﬁ, Fa%=—ﬁ, a=1,2,...,N. (3)
dr  dy, dr 0x,
A complete correspondence results by setting the “generalized coordinates” ¢,=x, and the “gen-
eralized momenta” p,=I",y,. This results in the remarkable insight that the “phase space”—in the
sense of Hamiltonian dynamics—for the point vortex system is, in essence, its configuration space.
The autonomous Hamiltonian,

N
1
H=-— T, I'zlnl,g, 4
477a§=1 at B af ()

is conserved during the motion of the point vortices (by the usual arguments of Hamiltonian
dynamics). Although H in Eq. (4) looks like a potential energy, it is in fact the kinetic energy of
the fluid motion surrounding the vortices.

In addition to H system (3) has three independent first integrals:

N N N
0=2Tw, P=2Tw. I=2T(5+y). (5)
a=1 a=1 a=1

There are at least three ways to see this. First, one may verify these integrals by direct calculation
either from Egs. (1) or (2). Second, following Kirchhoff, one may observe the invariance of the
Hamiltonian [Eq. (4)] to translation or rotation of the coordinates and apply what today would be
called Noether’s theorem. The two components of the linear impulse, Q and P, result from the
translational invariance. The angular impulse I is a constant of the motion because of the rota-
tional invariance of H, Eq. (4).

Third, one may develop the Hamiltonian formalism a bit further by introducing the notion of
a Poisson bracket, i.e., set

[f.gl=>

a=1

(o
5 ) ©

axa (9.))0( ﬁya axa
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The so-called fundamental Poisson brackets are

e, Tyl =[x, Toyal = -+ =1, (7)
[x1,y2] = [y ] =[x 2] = [y Lyl = -+ =0, (8)

or, when written in terms of the complex coordinates,
(200251 =0, [2as25] = = 208l s (9)

This formalism was developed by Poincaré** and Laura.” (For a modern account see Newton’s
monograph.*®)
It now follows by direct calculation from Egs. (7) and (8) that

[Q.H]=[P.H]=0, [IH]=0, (10)

and since the evolution equation for any function f of the generalized coordinates is

df af
—=—+[f,H 11
il [f.H] (11)
and Q, P, and I do not depend explicitly on time, it follows once again that Q, P, and [ are
integrals of the motion.

lll. INTEGRABILITY OF THE THREE-VORTEX PROBLEM

Exploring the Poisson brackets of O, P, and I with one another, we find

N
[0.,P]=> T, [0.1]=2P, [P.1]=-20. (12)
a=1

These relations show (a) that no new integrals arise by taking Poisson brackets between the three
known general integrals [Egs. (5)] and (b) that

[0?+ P2, I]=20[Q,I]+2P[P,I]=0 (13)

regardless of the values of the vortex strengths. Since we then always have three independent
integrals in involution, viz., H, I, and 0%+ P2, Liouville’s theorem of classical mechanics assures
integrability of the N-vortex problem for N=<3 and any values of the vortex strengths. Indeed, the
one-vortex problem is trivial: A single vortex on the unbounded plane remains stationary. The
simple solution of the two-vortex problem was, in essence, already included in Helmholtz’s
paper.”’

Poincaré’s treatment™* stops after the formal statement of having three independent integrals
in involution, whereas the earlier work of Grobli** expounds in elaborate and ingenious detail on
how to determine the trajectories of the three vortices. For additional background on the history of
the three-vortex problem the reader may enjoy the account given in Ref. 7.

We should also note in passing that for four vortices the relations Eqs. (12) show that if (i) the
sum of the circulations vanishes and if (ii) we consider states such that P=0Q=0, then the four-
vortex problem has four independent integrals in involution, viz., P, Q, I, and H. Thus, the
problem of a “neutral” four-vortex system with vanishing linear impulse is integrable. Details for
this case are presented in Refs. 22 and 9.

The actual “reduction to quadratures” of the three-vortex problem generally makes use of the
integrals H, Eq. (4), and
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N
L= >, Farﬁﬁw:(ﬁ ra>1—(P2+Q2). (14)
a=1

I<sa<pB<N

As a combination of known integrals L is clearly an integral of the point vortex equations, and a
few easy calculations give

[L,P]=[L,Q]=[L.I]=0, (15)

whence also

[L,P>+Q%]=0. (16)

Both L and H are expressed in terms of the distances between the vortices. For three vortices
let S1=l23, 52=131, and S3=112. Then

L=T,T3s7+ T30 53+ T Tos3,

1
H=- 4—[F2F3 log 2 + 5T, log 53 + ', T, log s3]. (17)
T
The fundamental Poisson brackets [Egs. (7) and (8)] yield
[S%,S%] =[x - x3)2 + (- }’3)2, (x5 = xl)z +(y3— )’1)2] =H{(x, = x3)(y3 = yD)[x2 = x3,y3 = 1]

4
+ (2= y3) (3 —x )y —yax3 —x I} =— F_3{(x2 —x3)(y3=y1) — (2 = y3) (3 —x))}

8A
=—F—(x1y2+x2y3+x3y1—x1y3—x3y2—x2y1)=—r—, (18)
3 3
where
1
A:E(x1y2+x2y3 +X3Y1 = X1Y3 = X33 = X)) (19)

is the area of triangle 123 with orientation, i.e., reckoned positive if 123 appear counterclockwise
and negative if 123 appear clockwise. By permutation of indices we obtain

8A
ry’

8A 8A
[s1.83] =~ [s3.53] ==, [s3.s1]=— . (20)
T, I,

The equations of motion for the squares of the sides of the triangle may now be found as follows:

d(s?) 1 (T,I, T, 2 11
T = [s%,H] =— ZT s% [s%,s%] + S—g[s%,sg] = 7—TF1A S—g - E . 21)

By permutation of indices we get the following system of ODEs:

d(s?) 2 1 1
21,
t v S2 S3

ds> 2 1 1
- =—F2A<—2——2>’

dt T 55 8]
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2
d(s3):gr3A<12_12>. @2)

dr T ST 8,

These equations, which are in Grobli’s 1877 thesis,24 are usually called the equations of relative
motion. (The present derivation is in the spirit of the work by Laura,” see also Ref. 13.) They may
be generalized to N vortices quite straightforwardly. Note that by Hero’s formula the absolute
value of A, Eq. (19), may be expressed in terms of the three sides s,, 5,, and s5 so that Egs. (22)
form a closed dynamical system for the evolution of the sides in the vortex triangle except for
instants at which the orientation of the vortex triangle is indeterminate, i.e., instants at which the
three vortices become collinear. Modulo a treatment of collinear configurations, which we provide
below, the three-degree-of-freedom dynamical system [Eqgs. (22)] has the two integrals [Egs. (17)]
and is thus integrable.

We note in passing the remark by Borisov and Palmov'? that if time is rescaled in Egs. (22)
by setting 2A dr=s}s553d 7, one obtains

d(s)
dr

d(s2) d(s3)
= Fls%(sg - s%), 2 - Fzs%(s% - s%), 2
dr dr

= Rs%(s% - s%) (23)

These equations are similar in form to the celebrated Lotka-Volterra equations used in modeling
predator-prey interactions in ecology. It is, of course, quite unlikely that there are any deep
philosophical implications to this formal observation.

Continuing the general arguments, we reiterate that Eqs. (22) describe the evolution of the
vortex triangle except for instants at which A=0, i.e., it is emphatically not true that any configu-
ration of three collinear vortices remains collinear. To understand what happens at an instant when
the vortices become collinear we require the equation of motion for A.

Using expression (19) for A and the Poisson brackets given previously, one finds after a
straightforward albeit somewhat tedious calculation that

1 1 1 1
[sl,ZA] (Fz F—3)s%+<1?2+r—3)(s§—s§),
1 1 1 1
STV
[53.24] = (1,2 1_‘1>52+ I, F1 (53—

1 1 1
[s3,2A] (F1 F2>s§+<r—l+—2)(sl v%) (24)

(The last two of these follow by permutation of indices from the first.) Thus,

dA r,r FF r,r
__[AH]_ _( 2 3[A I[Asz] Z[AS )
dr 4 52 53 53
[,+T I;+T +T,
—8—{ 2235+ S5 (- s + (s%—s%)]. (25)
T S1 s2 s3

This equation shows that even when the vortices are collinear the configuration is not a relative
equilibrium unless the term in square brackets in Eq. (25) vanishes. That is, even if the vortices
become collinear and A vanishes momentarily, the rate of change of A will not vanish in general,
and the vortex triangle will “rebound” in the next instant, usually accompanied by a change in
orientation.

The condition that a collinear configuration is a relative equilibrium of the three vortex
system, then, is that
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I'+I' +T +T
52 (3 — s + (S s + — (51— 53) = 0. (26)

In order to discuss the solution in detail and its dependence on the values of the circulations, one
can use the relation s;=s,+s5 (or one of its permutations), which follows from the collinearity of
the vortices, to turn Eq. (26) into a cubic for the quantity z=s,/s5. Setting s,=zs3, s;=(1+z)s5 in
Eq. (26) produces this cubic that is (except for the sign of z) Eq. (19) of the paper by Tavantzis and
Ting.50 The discussion proceeds by elementary means.

There is a neat geometric interpretation to all this: Think of the three quantities

2 2 2
57 55 53 oI,
by=N—, by,=N—", by=\—, here A = ——, 27
! | 2 r, 3 I where 27)

derived from the side lengths in the vortex triangle as trilinear coordinates in the plane. (This
definition excludes the important case L=0 to which we must return separately.) Assume units of
length and time chosen such that [\|=1. Now, according to Egs. (17), as the vortices move about
we always have

b1+b2+b3:1, (28)

i.e., by chosing by,b,, b5 as trilinear coordinates we can “build in” one of the conservation laws of
the motion. The second conservation law, H=const., is then represented as a set of level curves in
the (b,,b,,bs) trilinear coordinate plane.

There is an interesting geometric result for this representation, which must be well known but
that I would be hard pressed to find in the literature: Consider the constraint imposed on the b by
their derivation from side lengths in a triangle due to the triangle inequalities that pertain to said
triangle. These may be expressed by demanding that the argument of the square root in Hero’s
formula be greater than or equal to zero, viz.,

(s1+ 52+ 53) (51 +5,=53) (51 =55+ 53)(= 5, + 5, +53) = 0. (29)

(We have retained the first factor, even though it is always positive, because the b are defined in
terms of squares of the side lengths.) Inequality (29) may also be written as

2(s5355 + 5357+ 5253) = 51+ 55+ 53. (30)

When written out in term of the b, Eq. (30) becomes the quadratic form

2(T\Dybyby + Tol3baby + 3T bsby) = (U1b))* + (Dyby)* + (T'3bs)*. (31)

The geometric representation in the trilinear coordinate plane of this quadratic expression—i.e.,
Eq. (31) with equality rather than inequality—is a conic section. Points “inside” the conic repre-
sent realizable vortex triangles, and we refer to this portion of the b,b,b; plane as the physical
region. The boundary of the physical region corresponds to collinear states of the three vortices.

The classification of the kind of conic (ellipse, parabola, hyperbola) proceeds by elementary
means. On physical grounds we may always assume the three vortices numbered such that IT';
=1",>0 (two of the vortices must have the same sign and this sign may be chosen to be positive;
sign reversal of all vortex strengths corresponds to time reversal of the motion). If vy denotes the
sum of the three strengths, i.e., y=I";+1',+1';, the results of this classification may be stated as
follows:

(i) If I'; and y are both >0 or both <0, the boundary is an ellipse located in region I for I';>0
and in region II for I';<<0.

(i)  If y=0, the boundary is a parabola located in region II.

(iii)  If I’;<<0 but y>0, the boundary is a hyperbola with branches in regions I and II.
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FIG. 1. An example of the trilinear coordinate representation of relative motion of three vortices of strengths 2, 1, and —4
(see the text for details).

This result already contains the nontrivial information that in case (i) all relative motion of the
three vortices is bounded. While this is easy to see when I'3>0, it is trickier to prove when I';
< 0. An example of a physical region boundary when I'; and +y are both negative is given in Fig.
1.

Because the quadratic form [Eq. (31)] is homogeneous, the three trilinear axes are tangent to
the physical region boundary. The points of tangency are easily found. For example, setting b,
=0 in Eq. (31) we find I';b,=I"3b5. From this and Eq. (28) we get the point of tangency between
the physical region boundary and the b; axis as

s I
(bl’b25b3)_(O’FZ+FB’F2+I~3>' (32)
The other points of tangency follow by permutation of indices. Physically the limit ;=0 means
that vortices 2 and 3 coincide. That is, the three-vortex problem has really “degenerated” to a
two-vortex problem. Since two vortices are always collinear, the points of tangency, i.e., Eq. (32)
and its index permutations, satisfy Eq. (26). Said differently, if we view Eq. (26) as defining a
curve of degree 3 in the trilinear coordinate plane, it will pass through the points of tangency of
the physical region boundary and the trilinear axes.

Since the physical region boundary is of the second degree, and curve (26) is of the third
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degree, we expect by Bezout’s theorem that there will, in general, be six points of intersection.
Three of these are the points of tangency of the physical region boundary with the trilinear axes.
The other three are the collinear equilibria. This is the generic case, as one also deduces from
writing Eq. (26) as a cubic in s,/s3. But there are degeneracies, and the overall picture is more
complicated.50

A level curve of the Hamiltonian [Egs. (17)] in the trilinear coordinate plot may be wholly
situated within the physical region or it may intersect the physical region boundary at one or more
points. The significance of Eq. (26) is that it singles out points where the physical region boundary
and a level curve of the Hamiltonian have a common tangent. To verify this last statement let
Sf(x,y)=0, g(x,y)=0 be the equations of two plane curves in Cartesian coordinates. Assume that
the curves intersect at some point. Then it is clear that the curves will have a common tangent at
the point of intersection if

Yo o

dxdy dyox (33)

at that point. Assume now that f and g are given as functions of trilinear coordinates b;, b,, and
by rather than as functions of x and y. The condition for a common tangent then becomes

f182+ 283+ 381 — 281~ f382— f183=0 (34)

(where f, means df/db,, etc.). We use this relation when f(b;,b,,b3)=0 is the equation represent-
ing conservation of the Hamiltonian, and g(b,,b,,b3)=0 is the equation of the physical region
boundary, i.e., Eq. (31) with the inequality sign replaced by an equal sign. The condition that these
two curves have a common tangent at their point of intersection then becomes precisely the
condition that the right hand side of Eq. (26) vanishes.

Figure 1 provides an example of the preceding. The vortex strengths are (2,1,-4) (only the
relative strengths matter). According to the classification given previously this is case (i) and one
can only have L=<0, i.e., b;,b,=0, b3=<0 in the trilinear coordinate plane. All relative motion of
the three vortices is bounded. There is a collinear state (up to rotation of the three vortices) that is
represented in Fig. 1 by a level curve of the Hamiltonian touching the physical boundary ellipse
from the outside (to the left in the figure). The diagram shows that this configuration is stable in
the sense that a small perturbation of it will lead to configurations that pulsate about the collinear
state while rotating as a whole. There are no other points where a level curve of the Hamiltonian
and the physical region boundary have a common tangent. Hence, there is only this one collinear
relative equilibrium for this choice of vortex strengths. This result is, of course, consistent with
what one finds from an examination of the solutions to Eq. (26).

The point labeled P* in Fig. 1 corresponds to an equilateral triangle of vortices. An equilateral
triangle configuration is always a relative equilibrium regardless of the strengths of the vortices
placed at the vertices. For the particular choice of vortex strengths leading to Fig. 1 it is seen that
this equilateral triangle configuration is unstable to infinitesimal perturbations since P” is a saddle
point of the Hamiltonian.

For further discussion of the trilinear representation of the solution to the three-vortex prob-
lem on the unbounded plane see Refs. 1, 7, 49, and 50 and references therein. Grobli’s thesis of
1877 provided a blueprint for how to solve any given three-vortex plroblem.24 For special cases of
the vortex strengths the procedure that he outlined can be carried out and explicit formulas, which
typically involve elliptic or hyperelliptic integrals, can be obtained. One might here draw an
analogy to another famous problem in dynamics, the asymmetrical top. In that problem the solu-
tion of Euler’s equations can be obtained in terms of elliptic functions and the problem may be
thought of as solved once these expressions are established. However, to gain an overview of the
motion and how it depends on the various parameters of the problem, which in the case of the top
are the principal moments of inertia, one inevitably turns to the beautiful geometric construction of
Poinsot. Soon the qualitative insights provided by “polhode” and “herpolhode” rival the quanti-
tative accuracy of the elliptic function formulas. In the introduction to their classic four-volume
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work on the motion of the top, Uber die Theorie des Kreisels, published over the span of a dozen
years, 1897-1910, Klein and Sommerfeld lament the British and German insistence on quantita-
tive formulas and extoll the virtues of the French qualitative, geometrical approach. In the case of
three vortices the qualitative approach was Irish-American."*’ Actually, for the symmetric case of
three identical vortices Grobli had already found such a representation. This analysis was redis-
covered by Novikov* almost a century later in a paper that provided much of the modern impetus
to research on few-vortex dynamics.

Before leaving this topic, we note that the integrable case of four-vortex motion can also be
analyzed by using the trilinear coordinates mentioned. The value of the integral L, Eq. (14), is
clearly zero for this case. However, if we calculate

2

s

Ly =Ty, + TsT 3, + Tolsls, 1 =Tolao)? + Tsfzs + Talzy

i.e., an L-like quantity and an I-like quantity that both omit vortex 1, we find precisely as in Eq.
(14) that

Ll = (FQ + F3 + r4)11 - |F222 + F3Z3 + F4Z4|2 =— Flll — F%|Z]|2 =— F]I

In the second equality we have used that the sum of the strengths is zero and that Q=P=0. Thus
L, is an integral of this particular four-vortex problem, and the same goes for the three analogous
quantities L,, L3, and L, constructed by permutation of indices. The last of these, L,, is of course
just the quantity L for the three vortices 1, 2, 3, cf. Egs. (17). We can now eliminate /,4,154,/3,4 in
favor of [y,,ly3,15;. The resulting Hamiltonian is somewhat more complicated than in the three-
vortex case, but its level curves still carry the same significance in the phase plane diagrams. The
singularities /,4=0, [,,=0, and /53,=0 define three lines in the trilinear plot that form an equilateral
triangle. These must again be tangent to the conic bounding the physical region (just as the
trilinear axes, which correspond to I,3=0, I3;=0, and /;,=0, respectively, are tangent to this conic).
Several examples and a complete analysis may be found in the paper by Aref and Stremler.” The
earlier analysis by Eckhardt® uses a different canonical reduction of the equations of motion that
is again elucidated using various phase diagrams. However, the variables are different from the
intervortex separations.

While the availability of an integrable three-body problem is fascinating, this really results
from the relative simplicity of the one- and two-vortex problems, as briefly indicated. The three-
vortex problem is the first for which the distances between the vortices change in time, but the
problem of relative motion of the three vortices still contains just one frequency (when it is
periodic). As one crosses into the four-vortex problem, integrability is, in general, lost. The
transition from integrability to nonintegrability is analogous to what one finds in the N-body
problem of celestial mechanics: The motion of a “vortex of zero strength” in the field of three
interacting vortices—the “restricted four-vortex problem,” as we call it—is nonintegrable, just as
the restricted three-body problem of celestial mechanics is nonintegrable. The interpretation of the
restricted four-vortex problem is the advection of a “speck of dust” in the unsteady flow field
produced by the integrable motion of three vortices. The speck of dust formally enters the equa-
tions of motion as would an extra vortex of vanishing circulation. The notion that the advection,
and by extension the stirring, of passive particles by a simple time-dependent flow can be chaotic
has spawned a new subfield of fluid mechanics known as chaotic advection, a term that is today
used as a classifier and keyword for journals and conferences.”

One final comment on the dynamics of three vortices: When I'yI',+I',I';+1'31'=0 and L
=0, there exist motions where the triangle of vortices collapses self-similarly (i.e., without change
of shape) to a point in a finite time. The vortices move according to the similarity solution

t

12-ioT
zq(t) = Za(0)<1 - ;) : (35)

where 7 and w are real parameters dependent on the initial condition (which must satisfy L=0).
Positive 7 has the physical meaning of a collapse time. When 7 is negative the vortex triangle
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expands self-similarly for all times. In these motions all the vortices move on similar logarithmic
spirals, as one easily sees from Eq. (35). For three vortices there is an explicit construction of
initial states that will lead to this phenomenon of vortex collapse.1 Collapsing states may also be
found analytically for four and five vortices.*! We believe such configurations exist for an arbitrary
number of vortices subject to the necessary constraint on circulations that

N 2 N
> T =0 or(EFa> => T2 (36)
a=1 a=1

I<sa<pB=N

The existence of vortex collapse states raises a number of intriguing mathematical questions:
Initially smooth vorticity evolving under the 2D Euler equation is known to remain smooth for all
times. Thus, arbitrarily close to certain point vortex configurations that collapse in finite time,
there are smooth 2D flows that will not lead to a singularity in finite time but that must lead to
something very close to a singularity, cf. Ref. 51. What is the nature of this “singularity avoid-
ance?” Can one exploit the singular solutions for the point vortices to construct singular solutions
of smooth vorticity distributions in 3D? For example, what if one looks at a weakly 3D flow
consisting of vortex filaments that are almost parallel but have a slight 3D variation and where the
two-dimensional configuration in a dense set of cuts through these filaments (essentially perpen-
dicular to them) is a collapse configuration of point vortices? Can such initial states be constructed
that will display a singularity after a finite time when evolved according to the 3D Euler equation?
(This intriguing suggestion was made by Zakharov.>?) Is this a productive route to demonstrating
by explicit construction that the 3D Euler equations have a singularity after a finite time for certain
initial conditions? Other ideas that have been pursued, in particular, by the late Pelz, are to
construct fully 3D initial states from collapse configurations in three mutually perpendicular
planes, and then let such filament configurations evolve under 3D vortex dynamics, hopefully
ending in a collapse singularity of the 3D Euler equations. We must leave these speculations to
tantalize the reader.

IV. POINT VORTICES AND POLYNOMIALS

We have introduced the point vortex equations in their “complex coordinate” form, Eq. (2). It
is tempting to consider the polynomial that has roots at the vortex locations, with each root
weighted according to the corresponding vortex strength, and to attempt to find properties of this
polynomial from features of the motion of the vortices. Two cases have received the preponder-
ance of attention: the case of identical vortices and the case where all the vortices have the same
absolute strength but are either positive or negative. In the former case one considers the polyno-
mial

P(2)=(z—z))(z—-20) - (z—zw), (37)

where z,...,zy are the vortex positions. In the latter case, with N positive and M negative
vortices, one considers Eq. (37) for the positive vortices and

0@)=z=-¢)(z=80) (2= 2w, (38)

where {;, ...,y are the positions of the M negative vortices.

This approach of embedding the vortex positions as roots of polynomials has thus far prima-
rily yielded results for relative equilibria of the vortex assembly, i.e., for cases where the vortex
motion is simply a uniform rotation about the center of vorticity, a uniform translation or, in the
important special case [Eq. (36)], a stationary equilibrium. The following results have been
established:®

1. N collinear, identical vortices are in relative equilibrium if, and only if, they are situated at
the roots of the Nth Hermite polynomiczl;46

2. N identical vortices on a circle (with or without a vortex at the center) are in relative
equilibrium if, and only if, they are situated at the vertices of a regular N—gon;SI
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3. relative equilibria of n nested, regular p-gons may be found, and have been calculated in
detail for n< 3;5

4. n(n+1)/2 positive and n(n—1)/2 negative vortices form a stationary equilibrium if, and only
if, the vortices are situated at the roots of successive Adler-Moser polynomials.“’16 (It is
easily seen that when the vortices have strengths either +1 or —1, the numbers of minority
and majority populations are successive triangular numbers.)

5. N positive and N negative vortices form a uniformly translating equilibrium if, and only if,
the vortices of one sign are situated at the roots of an Adler-Moser polynomial.”’l(’ The
vortices of opposite sign are then at the roots of a polynomial of the same degree derived
from the Adler-Moser polynomial. In particular, such equilibria are only possible when N is
a triangular number.

Particularly the theory of stationary equilibria and its relation to rational solutions of the KdV
equation—the context in which the Adler-Moser polynomials were first discussed—is quite un-
expected and very beautiful. We do not pause to write it out here but refer the reader to other
expositions in which more details and further references are given.“’ﬁ’3

The problem of relative equilibria of point vortices is very rich. Although these equilibria are
all 2D patterns of points, the possibility of both positive and negative strengths adds considerable
variety to the possibilities. A number of methods have now been tried in seeking relative equilibria
for point vortices. From a physical point of view the most important problem is probably the
determination of vortex positions given a set of strengths although the problem of finding vortex
strengths that make a given set of points a relative equilibrium is formally simpler since it is linear
in the vortex strengths, cf. Ref. 42. Very intriguing are point configurations with the property that
they are relative equilibria of point vortices regardless of the strengths of the vortices used to
populate them. The equilateral triangle is one such configuration. Are there others (possibly for a
restricted class of vortex strengths)? This class of problems is not well explored.

Of particular interest are relative equilibria of identical vortices. This problem arises in the
application of point vortex dynamics to superfluids, for example, where quantum mechanics dic-
tates that the vortex circulations are quantized. One might feel that this most symmetrical problem
would be amenable to a complete solution given that some of the other problems with vortices of
mixed strengths have yielded to a solution. Thus far, however, this has not been the case. After
simple rescaling the problem of relative equilibria of N identical vortices is, in essence, the
problem of determining all solutions of the system of N algebraic equations,

A
Zo=2' , (39)
B=1 LaT2p
in the N complex variables z;, ...,zy. This problem is currently unsolved although many solutions

are known both analytically and numerically to high precision. Some examples are given in Fig. 2.
One approach to this problem is to consider the iterative scheme

N
> (2= 2p)]
B=1

o= N | N 2" (40)
> | 2z -2,)]
A=l | p=l
Note that the denominator cannot vanish: If it were assumed to vanish, we would have
AR
> =0 for\=1,...,N. (41)
p=1 AN " Zu

But
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FIG. 2. Examples of relative equilibria of N identical point vortices that are understood analytically: [(a)-(d)] N=9;
[(e)~(h)] N=12 (cf. Ref. 5).

N N N N
ST RN+ Y D
A=l u=1 X~ 2y A=1 pu=1 X "2y
so that
N N
NN-1
PP ENLLES S (42)
A=l p=1 2T 2 2

This contradicts Eq. (41) since according to that equation the left hand side of Eq. (42) should
vanish, which clearly it does not (except in the trivial case N=1).
The setup in Eq. (40), particularly the denominator on the right hand side, assures that

N
> 2,=0, (43)

=

N
N 2| 2 W(za-2p)]

N
—  a=1 =1
E |2a|2 = E Zola= N BN 2= 1. (44)
a=1 a=1
2| 2z -2,)]
A=1 | pu=1

Thus, iteration (40) becomes a map of the unit sphere in 2N-dimensional space (N-dimensional
complex space) onto itself. By Brouwer’s fixed point theorem it follows that the iteration has a
fixed point. For such a fixed point we have

N | N
0z,= 22—, Q=\/E
B=1 La™2p A=1

and it is trivial to rescale to obtain a solution of Eq. (39). Several of the equilibria shown in Fig.
3 were obtained numerically by iteration of eq. (40) or variations thereof. The issue of determining
these configurations—even of counting them accurately—is still largely unresolved.

It may add to the intrinsic interest of these solutions if we remark that they provide extrema
of

1'2

E_/

p=l A" Zp

: (45)
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FIG. 3. Examples of relative equilibria of N identical point vortices with an axis of symmetry, N=9,...,14. These are
determined to high precision numerically but poorly/not understood analytically. These configurations first appeared in the
Los Alamos Catalog (Refs. 17 and 18).

N
I1 %, (46)
a,B=1
under the subsidiary condition
N
> ’liﬁ = const. (47)
a,B=1

This is basically the content of Kelvin’s variational principle for relative equilibria of point
vortices.

Considering Eq. (39) it is easy to see that it has the following two symmetries: (a) we may
rotate each vortex position by the same angle (this amounts to multiplying each z, by the same
factor ¢'?) and the rotated configuration is also a relative equilibrium, or (b) we may reflect all
vortex positions in the real axis (this corresponds to replacing each z,, by its complex conjugate).
The first symmetry is not surprising since the relative equilibria rotate uniformly about the origin.
The second symmetry is less intuitive. Taken together these two symmetries might suggest that all
solutions of Eq. (39) have at least an axis of symmetry (which by rotation can be taken as the real
axis).

The “classical” relative equilibria for N identical vortices, the regular N-gon and regular,
centered (N—1)-gon, do of course have a discrete rotational symmetry by angles 27/N and
241/ (N-1), respectively. There are “nested” polygon relative equilibria, where two or more n-gons
are arranged within one another, that may be calculated”®’ in detail. These configurations also
exist in a “centered form,” i.e., with a number of nested, regular n-gons and a vortex at the center.
For up to three nested regular polygons it may be established that the only possibilities are for all
polygons to have the same number of vertices. (This may be true also for a larger number of
nested regular polygons but that is unproven.) There are also “degenerate cases” where two of the
n-gons have the same radius, but the vortices on these two do not form a regular 2n-gon. A
complete picture is available for two or three nested, regular polygons in the references just cited.
All these configurations have a symmetry group that is a discrete subgroup of the group of
rotations about the centroid of the configuration. Early on, the “folklore” about relative equilibria
of identical vortices was that they would all have a symmetry group of this kind. Figure 2 gives a
sampling of these analytically understood relative equilibria. There are, however, numerous addi-
tional relative equilibria, found by iteration of Eq. (40) or a numerical scheme that is some variant
thereof, with no complete analytical understanding but calculated to considerable numerical accu-
racy, that have the appearance of a system of nested, regular polygons but really are not. This class
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of equilibria has an axis of symmetry, a feature that may implicitly be picked out by the numerical
methods used to compute it. The existence of these configurations led to the conjecture, viable for
a couple of decades, that all relative equilibria of identical point vortices had an axis of symmetry.

For small N we know all. For N=1,2 all configurations are relative equilibria. For N=3 we
have the equilateral triangle and three vortices on a line with one at the midpoint of the line joining
the other two. For N=4 we have the collinear configurations (the vortices are at the roots of the
Hermite polynomial H,), the centered equilateral triangle, and the square. This much is firmly
established analytically. For N=5 we have the collinear configuration (vortices at the roots of Hs),
the centered square, and the regular pentagon. In all likelihood this is the complete list but a proof
has not been given (so far as I am aware). Already for N=6 the space of solutions is richer. It
includes, of course, the collinear configuration, the centered regular pentagon, and the regular
hexagon (two nested equilateral triangles, one turned 7/3 with respect to the other, which happen
to have the same radius). But there is also a symmetric configuration of two nested equilateral
triangles with the vortices situated on the same three “spokes” from the center [cf. Fig. 2(a) for the
related configuration with N=9]. Furthermore, a state consisting of three nested digons exists
which has four vortices on a line and two on a line perpendicular to it. We believe this is the
complete list of relative equilibria for N=6 but a rigorous proof is not available. For N=7 all our
knowledge is based on numerical explorations.

There are, of course, other ways than iterating Eq. (40) to obtain relative equilibria of N
vortices numerically. The following has proven particularly productive: Imagine a relative equi-
librium of N—1 vortices, where N is beyond the “trivial range” outlined above. Associated with
any such equilibrium are a number of points in the fluid that are at rest relative to the vortices and
so rotate with them at constant angular velocity. We call these the “corotating points.” In terms of
Eq. (39) such points are solutions of

N
1
7=,

, (48)
a=1% " Za

where the z, solve Eq. (39). I call this Morton’s equation since Morton studied problems of this
kind in his 1933 paper.37 Multiplying through by the product of the denominators, Eq. (48) may be
written in the form P(z,z)=0, where P is a polynomial of degree N in z and of degree 1 in z. If
the vortex configuration is symmetrical with respect to the real axis, then the solutions of Eq. (48)
are also either real or come in complex conjugate pairs. One might think that there would just be
N+1 such corotating points since in Eq. (48) that is the overall degree of the polynomial P.
However, this would be an underestimate. Indeed, it is possible for a polynomial in z and z to have
infinitely many roots, cf. zz=1. It turns out that Eq. (48) “retains” the property of polynomials in
a single variable of having finitely many roots. For simple, analytically known configurations, e.g.,
the regular N-gon, the roots may be found directly. There are 3N+ 1 corotating points.

Once the corotating points have been found, one may think of them as “embryonic” or “ghost”
vortices of strength zero. One may then consider an algorithm in which the vortex strength
associated with a corotating point is gradually increased, i.e., one imagines solving the system

_ Y , 1 € _ N 1
W= T e 9T (oo 49)

step by step as € is incrementally increased from O to 1. The “initial conditions” for this procedure,
i.e., the values of z and z,, for €=0, are of course the N-vortex equilibrium and one of its corotating
points.

This approach was used by Aref and Vainchtein'® and resulted in a multitude of relative
equilibrium configurations quite different from any that had been found previously. In particular,
none of these configurations seemed to have the concentric polygon appearance that was prevalent
for the solutions of the iteration [Eq. (40)]. Remarkably, this method also produced relative
equilibria without any apparent symmetry whatsoever (and certainly without an axis of symme-
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FIG. 4. Asymmetric relative equilibria of N identical point vortices, N=9,10, 11, determined by the method of “ghost”
vortices, Eqs. (49). From an analytical point of view these configurations remain a mystery.

try). These equilibria appeared for N=8 and several “families” of them emerged as N was
increased further. Examples are shown in Fig. 4. Note that each panel of this figure may be thought
of as representing two relative equilibria, viz., the one shown and its reflection in an axis through
the origin.

In terms of the notion of a generating polynomial, the discovery of asymmetric relative
equilibria is somewhat unpleasant. At least, if the relative equilibrium has an axis of symmetry,
which we take to be the real axis as before, a generating polynomial will have real coefficients and
there is a chance that it is “recognizable” in terms of the known families of polynomials of
mathematical physics. If the polynomial does not have real coefficients, it is unlikely that it is a
member of any of the well known families. One may, of course, simply turn the problem around
and consider polynomials the roots of which satisfy Eq. (39). Developing a theory of polynomials
based solely on the knowledge that their roots satisfy Eq. (39) remains an open challenge.

V. A TRIGONOMETRIC IDENTITY

In this section I want to give a “proof by vortex dynamics” of the identity

lp_1 Z—n
= cot =cot z. (50)
p

Imagine enclosing the N vortices we have been considering in a strip of width L. Now duplicate
the strip to the left and to the right such that each vortex has an infinite number of periodic images
on either side, i.e., each z,, a=1,...,N, now represents a row of vortices located at z,+nL, where
n=0,1,2,.... runs through the integers. If this representation is substituted into the point vortex
equations, we get, formally,

N o0
G st s v Ty . Tg
dr 27Tiﬁ=l Za=ZB p=1LlZa~ (Zﬁ+nL) Za— (ZB_nL)

Two points are important to note in this expression. First, we have indicated how we plan to
perform the infinite sum, which in the absence of such a prescription is not convergent. We do the
sum pairwise, adding the contributions from images on the left, zg—nL, and the right, zgtnL, at
equal distances from the “base vortex” at zg. With such a prescription the sum is convergent.
Second, one might have expected to see contributions from the periodic images of vortex « itself.
However, these contributions, when added according to the prescription just mentioned, cancel
pairwise and so contribute nothing to the sum.
We now transcribe the sum just written as follows:
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- N .
dﬁ" 1 ' 1 Za”2B

=—2'T +2
dr 27TiB=1 A Za_ZB ;g] (Za_zﬁ)z_ (nL)2

The function in square brackets,

m| L - /L T <7TZ)
- + 2 — 422, ——————— | =7 cot| —
,,El z —( L L| =z 2;1 (mz/L)*> - (nm)? | L L
by the partial fraction decomposition of cot.
Thus we have, finally,
dz, 1< (20— 2p)
ﬁ:—. ’I‘Bcot Lk . (51)
dr  2Lig L

These are the equations of motion for N vortices in a periodic strip of width L or, equivalently, for
N vortex rows within each of which the spacing between the identical vortices in the row is L.
Equation (51) appears to have been first published in 1928 by Friedmann and Poloubarinova.”

Equation (51) shares many properties of the equations of motion on the infinite plane. The
periodic strip system may be cast in Hamiltonian form. The Hamiltonian, as may be easily seen
from Eq. (51), is

H=-— E 'T',I'glog | sin
47TCVB_

{—M“L_ < )] ‘ . (52)

Two of the integrals familiar from the infinite plane case, the components of the linear impulse, P
and Q,

N
0+iP=>T,z, (53)
a=1

remain integrals for the periodic strip system, as was emphasized in 1959 by Birkhoff and Fisher'
in a thought-provoking paper. However, the integral [ is lost. The invariance of the Hamiltonian to
translations in the y direction is clear enough, since this is the direction of the strips. The invari-
ance to translations in the periodic direction is more mysterious. Rigorously speaking there is a
subtlety involved since each x, appearing in P is only defined modulo the strip width L, i.e., if in
the course of its motion a vortex “leaves” the basic strip at x=L, it “reappears” at x=0. Hence, Q
is not solely determined by the instantaneous configuration of the vortices in the basic strip—in
order to verify that Q is an integral of the motion, one also needs to know or keep track of how
often each vortex has gone through the basic strip. Nevertheless, O is well defined over time
intervals short enough for the same vortices to remain in the basic strip, and we have the usual
linkage between the invariance of H to translations and the invariance of Q and P in time. The
subtlety deepens a bit when we realize that Q is an integral because of the invariance of H to
translations in the “trivial” y direction, whereas P, which is well defined without recourse to
vortex trajectory histories, corresponds to the translational invariance along the x axis.

Again, the “one-vortex problem”—which is now really a “one-row-of-vortices problem”—for
the dynamics [Eq. (51)] is trivial. The vortex (and the entire row) remains stationary. A single row
of identical vortices, in the limit where the vortices are very close together, has often been used to
model a vortex sheet, and the basic integrodifferential equation of motion for such a sheet, the
so-called Birkhoff-Rott equation, may be obtained as a limit of the point vortex equations.

The result [Eq. (50)] is obtained by considering the flow field produced at z=x+iy by a
periodic row of identical vortices. Assuming the vortices all to have circulation I, this flow field
is given by
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1< (z-2,)
mz-2z,
u—iv=Ea§l Facot[T]. (54)

Equation (50) is nothing but the statement that the induced velocity from a periodic row is
invariant to our decision as to how we partition this row into periodic segments.

Thus, consider vortices of circulation I' placed at the origin and along the x axis at +nL, n
being integer. Viewing this as a periodic system with one vortex per strip of width L, i.e., using
N=1 in Eq. (54), we find the velocity at an arbitrarily chosen field point, z, to be given as

1 7
—iv=—"7T cot| —|. 55
u—iv 7 CO(L) (55)

Now, consider this exact same vortex configuration but use a strip of width pL, where p is an
integer =2. In this view of the row we have p vortices in the basic strip at x=0,L,...,(p—1)L.
The velocity at the arbitrary field point z must, of course, be exactly the same on physical grounds,
since nothing but our viewpoint concerning the width of the periodic strip has changed. By Eq.
(54) the velocity calculated from the second point of view is given as

r o L
u—iv= > cot{M]. (56)
2len=O pL

Equating the two expressions for the velocity [Egs. (55) and (56)] we have a proof by vortex
dynamics of the trigonometric identity [Eq. (50)].
Taking the limit z—0 of Eq. (50) we have

lp_1 nw
- cot| — | =0. (57)
pn:l p

Identity (50) leads to many further identities by taking derivatives of it and/or substituting par-
ticular values for z. For example, taking the z derivative one obtains

17 1 1

iz sin®((z—nm)lp)  sin’z’

which for z=—m/2 yields

p-1 1

_ 2
EO sinX(m{2n+ )2p)) T
a formula that can, in turn, be used in proofs of further well known identities, cf. Ref. 28 and
references therein.
For vortices in a periodic parallelogram the cot interaction in Eq. (51) is replaced by

iz, 1 <
Lo

= ’F — 235 ’ +

dr 277;'52:1 pHlza=zgion @) + o

" (o+ir)- L. (58)
iw; A

In this formula ¢ is the Weierstrafs { function for the parallelogram in question. The quantities w,;
and w, are the half-periods of the parallelogram, 7,={(w,), and the particular form of Eq. (58)
arises when w, is real. The quantities Q and P are the components of the linear impulse as before.
In this case the periodicity of the flow implies (by Stokes theorem) that the sum of the vortex
strengths in the basic parallelogram must vanish. Again, this is a Hamiltonian system that retains
the integrals Q and P [Eq. (53)] for similar reasons and with similar caveats about tracking
vortices as they cross in and out of the basic periodic parallelogram as we discussed in the case of
the periodic strip. The details may be found in Ref. 48.
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There is, again, an addition formula for the Weierstrall { function which expresses that the
velocity at a field point in such a doubly periodic vortex array must be independent of how we
choose to “carve up” the array into periodic boxes, i.e., whether we choose to compute it using one
box, as in Eq. (58), or whether we choose to lump together several boxes to form a larger “basic
cell” (with more vortices). This addition formula, the counterpart to Eq. (50), is

p-1
{(z;01,07) = Z {(z=mo; —nwy;pw,pay) + (p = 1) {0 + 050, 0,). (59)
m,n=0

There are other interesting connections that emerge from considering these systems. For
example, Stremler*’ shows how consideration of the Hamiltonian for the vortices, which is the
kinetic energy of the flow field less the infinite “self-energy” of the singular vortices, leads to an
identity for a class of infinite lattice sums. Essentially, this identity arises by comparing the
expression for the energy based on contributions from the vortices to the expression for the energy
based on an integral of the velocity field expanded in Fourier modes over the basic cell.

I submit that there is something of a “gold mine” of results here, many of them probably well
known to specialists in elliptic function theory, but maybe not connected in the way they could
become when viewed as expressions for velocities, linear and angular momentum, or kinetic
energy of a system of vortices. Possibly, instead of speaking of a classical mathematical play-
ground, we ought to think of point vortex dynamics as a “smorgasbord.”

VI. PROJECTIVE GEOMETRY OF STAGNATION POINTS

There is an intriguing connection between certain characteristics of the flow field surrounding
an assembly of vortices and some classical results in projective geometry. This connection arises
principally from the notion that the vortex positions are the roots of some polynomial or, in the
case of mixed signs of the vortex strengths, are the zeros and poles of some rational function. We
again consider N vortices with strengths I',...,I'y situated in the complex plane. For simplicity
we shall assume all the I' to be rational. Although, in principle, the vortex strengths are real
numbers, one would assume that approximating them closely by a set of rationals should be
entirely adequate. (This point is hardly worth commenting on were it not for the observation that
in solving the three-vortex problem in a periodic strip8 or a periodic parallelogram48 it turns out
not to be true.) Assuming this, we may rescale all I' by a common denominator for the entire set
of rational numbers. Physically, this corresponds to changing the scales of length and/or time.
Ultimately, then, we may assume the I' to be a set of integers.

The 2D flow field, (u,v), produced by these vortices is given by

N
1 r
u—iv=— —. (60)
2 a=1 3~ 2a
Now, consider the rational function
R@)=(z-z)"1(z-2)"2 (2= 2™ (61)

This is a rational function because of our convention that the I' are integers. If all the I" are
positive, R(z) is a polynomial.

At issue is the location of the zeros of the derivative of R(z). These zeros are the instantaneous
stagnation points of the flow [Eq. (60)]. We have, thus, a classical problem of analysis, viz., to
characterize the location of the zeros of the derivative of a polynomial (or rational function) in
terms of the zeros (and/or poles) of the polynomial (rational function) itself. The general, and very
beautiful, result due to Siebeck™ is this: The stagnation points, i.e., zeros of Eq. (60), are the foci
of an explicitly given curve of class N—1 that touches each line segment connecting a z, to a zg
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(a) )

FIG. 5. Stagnation points for three-vortex flow as foci of the Siebeck conic. (a) Identical vortices; (b) vortices with strength
ratio 1:1:-1.

in the point that divides that line segment in the ratio I',: I'g. This result is proven early on in the
book of Marden.™ It has been elaborated and proven in a manner more accessible to fluid mecha-
nicians in Ref. 4.

We illustrate the result by two examples reproduced from Ref. 4. In Fig. 5(a) we are consid-
ering the symmetrical case of three identical vortices. The vortex triangle is shown, with a vortex
at each vertex. In this case the Siebeck conic is an ellipse. It touches the sides in their midpoints,
the points that divide the side in the ratio 1:1. The two foci of the ellipse are the instantaneous
stagnation points. To amplify this we have drawn also the instantaneous dividing streamline which
bifurcates at the two stagnation points.

The problem discussed here is related to the general problem of finding the locations of the
derivative of a polynomial given the location of its roots. The well known Gauss-Lucas theorem
states that the roots of the derivative of a polynomial are situated within the convex hull spanned
by the roots of the polynomial. Siebeck’s theorem provides a different restriction on the positions
of the zeros (stagnation points). In the case of three identical vortices the stagnation points are the
foci of an ellipse inscribed in the vortex triangle. This is a sharper characterization of their location
than just knowing the stagnation points to be inside the vortex triangle. Considering vortices of
different strengths (still all positive) gives the location of the roots of the derivative of a polyno-
mial with multiple roots in terms of the location of those roots.

In Fig. 5(b) we illustrate the case of three vortices with strengths (1,1,—1). Again, the vortex
triangle is shown. This time the Siebeck conic is a hyperbola. It touches the side connecting the
two identical vortices at its midpoint. It touches the two other sides in the points that divide those
sides in the ratio 1:(~1), i.e., in points located a side length further along on the extension of the
side beyond the negative vortex. The foci of this hyperbola are the instantaneous stagnation points.
To emphasize this, the instantaneous dividing streamline is shown. It has points of bifurcation at
the stagnation points. As the vortices trace out their trajectories, it is clear that a diagram similar
to Fig. 5(b) will prevail so long as the vortices do not become collinear. In particular, the two
stagnation points will be situated one in each part of the sector between the sides in the vortex
triangle that connect the negative vortex to the two positive vortices, outside the vortex triangle
itself. Even a simple conclusion such as this is not so easy to derive directly from Eq. (60), with
u=v=0, without recourse to the geometrical interpretation.
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Vil. MORE, EVER MORE

I hope the reader is convinced that point vortex dynamics touches on a multitude of areas of
mathematics and that it can provide interesting physical interpretations to a number of mathemati-
cal results as well as suggest new ones for investigation. There are many further examples that
could have been given. There are extensions of the problems discussed to manifolds such as the
sphere and the torus, to bounded domains, and to multiply connected domains.

If T were to single out an area of investigation that is largely unexplored and seems to hold
considerable promise, it would be the application of probabilistic ideas to point vortex motion as
an alternative approach to problems that are—at least superficially—related to turbulence. This
approach is exemplified by the seminal paper of Onsager43 who used ideas from equilibrium
statistical physics to try to elucidate the formation of large coherent vortices in predominantly 2D
flows. Onsager may have had in mind the spontaneous emergence of long-lived vortices in the
planetary atmospheres of the giant gaseous planets, Jupiter in particular, and in our own oceans
and atmosphere. However, the statistical approach to point vortex dynamics still has many unex-
plored aspects. Theories beyond equilibrium statistical mechanics ought to be applied to this
system.

Another intriguing area that is just beginning to be explored is the cross section between the
celestial mechanics of point masses and the dynamics of point vortices. The theory of relative
equilibria of point masses and many aspects of point mass dynamics are in a much more mature
state than their point vortex counterparts, having been studied for a longer period of time and also
having been of more immediate concern, e.g., in connection with space exploration, the trajecto-
ries of satellites, planetary and galactic dynamics, and so on. Thus, Hampton and Moeckel” have
just announced proofs “that the number of relative equilibria, equilibria, and rigidly translating
configurations in the problem of four point vortices is finite.” Their proofs are “based on symbolic
and exact integer computations which are carried out by computer.” The main result of their paper
is the following.

Theorem: If the vortex strengths I',, are nonzero then the four-vortex problem has

(1) exactly 2 equilibria when the necessary condition L=0 holds;
(if)  at most 6 rigidly translating configurations when the necessary condition I'j+ '+ '3+
=0 holds;

(iii)  at most 12 collinear relative equilibria;

(iv)  at most 14 strictly planar relative equilibria when I')+I',+I'3+14=0; and

(v)  at most 74 strictly planar relative equilibria when I'j+1',+1'3+I',#0 provided no two
vortex strengths or no three vortex strengths sum to zero.

Here “strictly planar” means planar (as all these equilibria are) but not collinear. Relative equi-
libria are equivalent if they arise from one another by rotation, translation, or dilatation. However,
relative equilibria that arise by reflection are not considered equivalent in this classification and
enumeration. While many fluid mechanicians may consider the four-vortex problem to be too
simple to merit much attention, the necessary mathematical tools to prove even this theorem are
quite impressive. Furthermore, many of these mathematical tools and concepts are entirely new to
vortex dynamics and by extension to fluid mechanics. Again, I see results of this type as vindi-
cating the theme of this article that point vortex dynamics is, indeed, a classical mathematics
playground.
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