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We determine equilibrium configurations of interacting point vortices in which identical vortices are
arranged on concentric circles and/or form a set of nested regular polygons with or without a vortex
at the center. A new analytical method is developed that uses moments of the vortex positions and
yields particularly simple results for equilibria of this kind. A complete determination of all
triple-ring equilibria is given and numerous previously unknown configurations are identified.
Several equilibria previously reported in the literature, found by numerical solution, are
characterized analytically. ©2005 American Institute of Physics. fDOI: 10.1063/1.1898143g

I. INTRODUCTION

The determination of vortex patterns that move without a
change of shape or size has been pursued for a long time.
Kelvin called this problem area “vortex statics.” More recent
work has used the term “vortex crystals,” since the patterns
of interacting vortices in question move as if rigidly con-
nected. A recent review1 gives a sense of the broad variety of
phenomena in which this problem has played a role, and the
arsenal of mathematical techniques that has been applied to
it.

In this paper the aim is to expand our analytical under-
standing of vortex crystals consisting of a finite number of
identical point vortices. The equations of motion for such a
system are well knownssee the aforementioned review1 or
the monographs2,3d:
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N
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za − zb

, a = 1,…,N.

The notation is as follows: there areN-point vortices all of
circulation or strengthG. Each instantaneous vortex position
is represented as a point in the complex plane:za , a
=1,… ,N. The vortices move about according to Helmholtz’s
laws, i.e., the positionsza are to be thought of as functions of
time, and these ordinary differential equations then deter-
mine their motion. Note the complex conjugation on the left-
hand sides. On the right-hand side the prime on the summa-
tion symbol reminds us to omit the singular terma=b.

The problem of vortex statics arises by looking for solu-
tions where the entire configuration moves as a rigid body.
For the present case of identical vortices it may be shown1

that only rigid body rotation is possible. In that case we have
zastd=zas0deivt, wherev is the angular frequency of rotation
of the vortex pattern. If thisAnsatzis substituted in the equa-
tions of motion, they reduce to a set of algebraic equations:

za = o
b=1

N

8
1

za − zb

, a = 1,…,N, s1d

for a set of stationary, complex positionsz1,… ,zN of the
vortices. In writing Eq.s1d, which is our starting point for
this paper, we have chosen units such that 2pv /G=1. In the
application to vortices in superfluid He4 the value of this
physical quantity is crucially important since a sufficiently
accurate measurement of the geometry of the vortex configu-
ration, and an accurate determination of its angular velocity
of rotation, would allow the determination ofG=h/m, where
h is Planck’s constant andm is the mass of a He atom. An
important ingredient in making such a determination, how-
ever, is a thorough understanding of the geometry of the
patterns in question and this is the problem addressed in this
paper.

The notion that the vortices in a vortex crystal are ar-
ranged on a system of concentric circles has been around
since the beginning. Indeed, Kelvin and his followers
thought that these rigidly moving vortex patterns provided
models of atoms, which were thus thought to be some kind
of vortical excitations of the ether. A vortex crystal with vor-
tices arranged on concentric circles is then reminiscent of
classical pictures of electrons arranged in orbitals. Kelvin’s
idea inspired a considerable amount of work, in particular, a
full analysis of vortices arranged in a single regular polygon
by Thomson, the later discoverer of the electron.

As a recent example of relevance we mention the study4

in which a vortex crystal was identified in the eye of hurri-
cane Isabel. Early on the eye seemed to form a centered,
regular pentagon of vortices. Then, over a 6-h period it
changed, first to a regular hexagon of vortices and then back
to a centered, regular pentagon.

A study of configurations with two rings of vortices was
undertaken by Havelock,5 who was particularly interested in
“double alternate rings” where vortices of opposite circula-
tion populate the two rings. For large radii these configura-
tions approach vortex-street-like patterns and this was one
motivation for Havelock’s study.

A comprehensive numerical attack on the problem of
stable, steady configurations of identical vortices was under-
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taken by Campbell and Ziff6 in a report that has since be-
come known as the Los Alamos catalog. The report was
motivated by the experimental realization of steady vortex
patterns in superfluid He4 by Yarmchuk, Gordon, and
Packard.7 Campbell and Ziff6 suggested that they had found
all linearly stable equilibria forNø30, a claim that thus far
has stood the test of time. Many, not to say most, of the states
discovered and tabulated in the Los Alamos catalog present
the visual impression of vortices arranged on concentric
circles, i.e., of nested, regular polygons. It has since become
clear that although many, maybe all, the stable equilibria are
identified in the Los Alamos catalog, there is a great richness
of unstable equilibria, few of which are included in the cata-
log, and many of which are quite different in appearance
from a set of concentric rings. Only the simplest equilibria in
the catalog and virtually none of the more complicated equi-
libria found since, are understood analytically. The catalog
has apparently never been published in its entirety. Some of
the results were published in Ref. 8.

In this paper we first developsSec. IId a novel method of
constructing moments of Eqs.s1d that leads to a hierarchy of
equations of ever increasing order that must be satisfied if
the vortices form an equilibrium. We summarize this system
using generating functions in Sec. III. We then explore the
consequences of making theAnsatzthat the vortices are ar-
ranged on a circlesSecs. IV and Vd or on a set of nested
regular polygonssSecs. VI and VIId in the relations obtained.
This turns out to be very fruitful and leads to a number of
conclusions, e.g., that if all the vortices are on just one circle
swith a vortex at the center or notd, then they must be ar-
ranged in a regular polygon, and that if the vortices are ar-
ranged on nested regular polygons, then for two and three
such polygons the number of vortices in each must be the
same, i.e., one can have nested regularn-gons but not, say, a
regular n-gon nested within or outside a regular 2n-gon.
sOne can, however, have configurations with three regular
n-gons of which two have the same size but do not form a
regular 2n-gon. These configurations are determined as
well.d

Introducing a geometrical representation that uses trilin-
ear coordinates we determine the number of configurations
of three nested, regularn-gons for alln, both centered and
noncentered. We find that the number of these states in-
creases to and then levels off at 16 fornù9, and we provide
a geometrical-analytical approach to finding all these states.
We visualize the actual configurations for several values ofn
and show that the solutions approach “asymptotic forms” as
n increases with the radii of the nested polygons given as
simple functions ofn.

We concludesSec. VIIId with some summary comments
on the results obtained and their relationship to earlier work.

II. MOMENT RELATIONS

In order to attempt to solves1d we consider the “mo-
ments”
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From s1d we get by simple algebra that
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or

Mn =
1

2
So

k=0

n−1

Nn−1−kNk − nNn−1D . s4d

Let us check this relation for the first couple of moments,
n=0 andn=1, where both sides ofs4d may be calculated
explicitly. From the definitions and easy use ofs1d we have

M0 = 0, M1 = NsN − 1d/2, s5ad

N0 = N, N1 = 0. s5bd

We see that these values are consistent withs4d if we define
an empty sum to be zero.

For n=2 we get the result

M2 = 1
2s2N1N0 − 2N1d = 0. s6ad

In other words,

o
a=1

N

za
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zauzau2 = 0, s6bd

or
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xasxa
2 + ya

2d = o
a=1

N

yasxa
2 + ya

2d = 0, s6cd

and so on.

III. GENERATING FUNCTIONS

We may summarize the moment relationss4d by intro-
ducing “generating functions”

msXd = o
n=0

`

MnX
n s7d

and
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We see that
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Similarly,
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. s10d

We now have the following transformationsswhere the
prime on the internal summations meansbÞad:
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The first term on the right-hand side is 2msXd /X. The second
may be related to

n8sXd = o
a=1

N
za
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1

X
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= −
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Finally then,

m = 1
2Xhn2 − Xn8 − nj. s11d

This is the generating function counterpart of the relations
s4d.

As a simple check on the derivation ofs11d consider the
case of vortices on a line, for convenience taken to be thex
axis of coordinates. Then

msXd = o
a=1

N
xa

1 − Xxa

=
1

X
o
a=1

N
Xxa − 1 + 1

1 − Xxa

=
nsXd − N

X
.

Consider also the polynomialPsXd=sX−x1d¯ sX−xNd that
has roots at the locations of the vortices. It is easy to see that

P8sXd = PsXdo
a=1

N
1

X − xa

,

so we have the general relation that

P8S 1

X
D = XPS 1

X
Do

a=1

N
1

1 − Xxa

= XPS 1

X
DnsXd.

In the case of vortices on a line, then, Eq.s11d becomes in
the first instance

nsXd − N

X
=

X

2
fnsXd2 − Xn8sXd − nsXdg,

and then

u2P8sud
Psud

− Nu=
1

2u
HFu

P8sud
Psud G2

+ u
d

du
Fu

P8sud
Psud G

− u
P8sud
Psud J ,

whereu=1/X. A few elementary steps yield

P9 − 2uP8 + 2NP= 0,

which is the ordinary differential equation satisfied by the
Hermite polynomials, i.e., the vortices are located at the
roots of theNth Hermite polynomial. This result is well
known.1

IV. VORTICES ON A RING

Let us apply the equation for the generating functions to
the case where all vortices are situated on a single ring of
radiusR. By the definitions of the moments we then have
Mn=R2Nn−1, whereM1=NR2=NsN−1d /2, or R2=sN−1d /2.
Thus,

msXd = 1
2sN − 1dXnsXd. s12d

Substituting this intos11d we get an ordinary differential
equationsODEd for n,

Xn8 = nsn − Nd, s13d

which may be integrated to give

n =
N

1 − AXN , s14d

whereA is a constant of integration.
The power-series expansion ofs14d is

n = N + ANXN + ¯ .

Thus, we conclude that if all the vortices are situated on a
ring, then

N1 = N2 = ¯ = NN−1 = 0. s15d

Newton’s formulas for the sums of powers of the roots of a
polynomial ssee Sec. 68 in Ref. 9d then show that the coef-
ficients of the polynomial

PsXd = sX − z1d ¯ sX − zNd,

considered previously for vortices on a line, all vanish, ex-
cept for the coefficient ofXN and the constant term, i.e.,PsXd
is of the formXN−a, wherea is some complex number. The
vortices must therefore be situated at the vertices of a regular
N-gon.

We have thus established: theonly steadily rotating con-
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figuration ofN identical vortices with all vortices situated on
a circle is the regularN-gon.

We now haveNN=NRN=NfsN−1d /2gN/2=AN in the no-
tation of s14d. Thus,

nsXd =
N

1 −SN − 1

2
DN/2

XN

s16d

for this case.

V. VORTICES ON A CENTERED RING

If N+1 identical vortices are in a steadily rotating con-
figuration withN vortices on a circle of radiusR and one at
the center, the momentsMn, nù0 snow defined using all
N+1 vorticesd, have the same expressions as in the case just
considered, since the vortex at the origin does not contribute.
The momentsNn,nù1, also have the same values as before.
The value ofN0 needs to be given since 00 is indeterminate.
We setN0=N. sM0 is still well defined and equal to 0.d

In the transformations leading to Eq.s4d we now have
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or

Mn =
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2Fo
k=0
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Nn−1−kNk − sn − 2dNn−1G , s48d

whereN0=N is implicit.
Moving on to the generating functions, we have the

same expressions formsXd andnsXd as ins7d–s10d. A differ-
ence arises in the last line of the transformation ofnsXd2

which becomes

nsXd2 =
2

X
o
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N za −
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Since the vortex at the origin is stationary,

o
a=1

N
1
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= 0, s17d

i.e., N−1=0, so

nsXd2 =
2

X
msXd − 2nsXd + o

a=1

N
1

s1 − Xzad2 ,

where, as beforefsee the line preceding Eq.s11dg,

o
a=1

N
1

s1 − Xzad2 = Xn8sXd + nsXd.

The end result in this case, then, is that

msXd = 1
2Xhn2 − Xn8 + nj s118d

in place ofs11d.
We still haveMn=R2Nn−1, which according tos17d also

works for n=0. Now M1=NR2=NsN+1d /2, so in this case
R2=sN+1d /2. Thus,

msXd = sN + 1dXnsXd/2. s128d

Substituting this intos118d we get, once again, the ODEs13d
for n!

We thus have that theonly steadily rotating configuration
of N+1 identical vortices withN vortices situated on a circle
and with one at the center is the centered regularN-gon.

In this caseNN=NRN=NfsN+1d /2gN/2. Thus,

nsXd =
N

1 −SN + 1

2
DN/2

XN

. s168d

VI. NESTED REGULAR POLYGONS OF
VORTICES

As a second example of this approach, let us consider
nested, regular polygons of identical vortices. Thus, letN
identical vortices be placed onp polygons with the number
of vortices on polygonss=1,… ,p being ns, where thenn1

+n2+¯ +np=N. The positions of the vortices in thesth
polygon are Rs exps2pias/nsdexpsifsd , s=1,… ,p; as

=1,… ,ns. Here Rs is the radius of the circle through the
vortices on thesth polygon, andfs is a phase that gives the
amount thesth polygon is turned relative to the real axis.
sWe may, of course, assume that one of these phases is zero
but choose to keep the formulas symmetric in all indices for
now.d

With this Ansatzthe functionn may be written down as
follows:

nsXd = o
s=1

p

o
as=1

ns 1

1 − XRse
ifse2pias/ns

= o
s=1

p
ns

1 − sXRse
ifsdns

.

Let us set

nnsX;zd =
n

1 − sXzdn . s18ad

Then,
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Similarly,
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We can now work out both sides of Eq.s11d. We first
note that

nn8sX;zd =
n2sXzdn

Xf1 − sXzdng2 =
nn

2sX;zd − nnnsX;zd
X

,

or

Xnn8 = nnsnn − nd. s19d

Thus, ins11d we have
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p
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,

where the prime on the double sum meanssÞ r. Thus,

o
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p

s2Rs
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s,r=1

p

8nns
nnr

. s20d

This is our basic result that we now specialize to various
cases.

A. Two nested polygons

Consider the simplest casep=2. Clearing the denomina-
tors we get froms20d

n1s2R1
2 − n1 + 1df1 − sXR2e

if2dn2g

+ n2s2R2
2 − n2 + 1df1 − sXR1e

if1dn1g = 2n1n2.

If n1Þn2, the coefficients ofXn1 andXn2 must vanish sepa-
rately. This would require

2R1
2 = n1 − 1

and

2R2
2 = n2 − 1.

But the constant term,

n1s2R1
2 − n1 + 1d + n2s2R2

2 − n2 + 1d − 2n1n2,

must also vanish, and ifR1 andR2 have the values just indi-
cated, this would imply thatn1n2 vanishes, which is unac-
ceptable.

We conclude thatn1=n2=n in order to have a solution,
and then that

s2R1
2 − n + 1df1 − sXR2e

if2dng

+ s2R2
2 − n + 1df1 − sXR1e

if1dng = 2n.

Equating the constant term and the coefficient ofXn to zero
we obtain

R1
2 + R2

2 = 2n − 1, s21ad

s2R2
2 − n + 1dsR1e

if1dn + s2R1
2 − n + 1dsR2e

if2dn = 0.

s21bd

The second of these may be written

s2R2
2 − n + 1dR1

neinsf1−f2d + s2R1
2 − n + 1dR2

n = 0,

from which we conclude that the exponential must be real,
i.e., equal to ±1. These two possibilities correspond to the
polygons being symmetrically arranged, with the vortices
both on the same spokes from the center, or in a staggered
arrangement, with the vortices in one polygon rotated by
p /n relative to those in the other. For the symmetrical case
we get usings21ad,

s2R1
2 − 3n + 1dR1

n + s2R2
2 − 3n + 1dR2

n = 0. s22ad

For the staggered case we have

s2R1
2 − 3n + 1dR1

n − s2R2
2 − 3n + 1dR2

n = 0. s22bd

If we set j=R1/R2, we may recasts21ad and s22d as a
single equation forj,

R2
2s1 + j2d = 2n − 1,

s2R2
2j2 − 3n + 1djn ± s2R2

2 − 3n + 1d = 0,

so

S2
2n − 1

1 + j2 j2 − 3n + 1Djn ± S2
2n − 1

1 + j2 − 3n + 1D = 0,

or

sn − 1djn+2 − s3n − 1djn − s3n − 1dj2 + sn − 1d = 0 s23ad

for the symmetrical case and

sn − 1djn+2 − s3n − 1djn + s3n − 1dj2 − sn − 1d = 0 s23bd

for the staggered case. These results are in accord with pre-
viously published results on “double rings” obtained directly
from the equations of motion.1,5

B. Three nested polygons

Let us now consider the case of three nested, regular
polygons. Returning tos20d and clearing the denominators,
we obtain
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n1s2R1
2 − n1 + 1df1 − sXR2e

if2dn2gf1 − sXR3e
if3dn3g

+ n2s2R2
2 − n2 + 1df1 − sXR3e

if3dn3gf1 − sXR1e
if1dn1g

+ n3s2R3
2 − n3 + 1df1 − sXR1e

if1dn1gf1 − sXR2e
if2dn2g

= 2n1n2f1 − sXR3e
if3dn3g + 2n2n3f1 − sXR1e

if1dn1g

+ 2n3n1f1 − sXR2e
if2dn2g. s24d

Balancing the terms independent ofX gives the obvious re-
lation

n1R1
2 + n2R2

2 + n3R3
2 = 1

2NsN − 1d, s25d

where

N = n1 + n2 + n3.

Now, let us first assume thatn1,n2,n3. Then the
highest-order term inX is the term inXn2+n3, i.e., we must
have

2R1
2 = n1 − 1. s26ad

The lowest-order terms inX are the terms inXn1. Balancing
their coefficients gives

n2s2R2
2 − n2 + 1d + n3s2R3

2 − n3 + 1d = 2n2n3.

Combining this withs25d we have

2n1R1
2 = NsN − 1d − 2n2n3 − n2sn2 − 1d − n3sn3 − 1d

or

2n1R1
2 = NsN − 1d − sn2 + n3d2 + n2 + n3

= NsN − 1d − sN − n1d2 + N − n1,

i.e.,

2R1
2 = 2N − n1 − 1. s26bd

But s26ad ands26bd taken together given1=N, which is un-
acceptable. Thus, two of the polygons must have the same
number of vertices.

Let the indexing be chosen such thatn1=n2=n. Equation
s24d now has terms of degree 0,n, 2n, n3, andn3+n. Let us
assume thatn3Þn andn3Þ2n, such that the terms ins24d of
degreen3 have to balance individually. Then we get

R1
2 + R2

2 = 2n − 1.

Similarly, since there is just one term of degree 2n, its coef-
ficient must vanish, i.e.,

2R3
2 = n3 − 1.

But these two results are incompatible withs25d. We con-
clude, therefore, that we must either haven3=n or n3=2n.

For n3=2n Eqs.s24d take the form

s2R1
2 − n + 1df1 − sXR2e

if2dngf1 − sXR3e
if3d2ng

+ s2R2
2 − n + 1df1 − sXR3e

if3d2ngf1 − sXR1e
if1dng

+ 2s2R3
2 − 2n + 1df1 − sXR1e

if1dngf1 − sXR2e
if2dng

= 2nf1 − sXR3e
if3d2ng + 4nf1 − sXR1e

if1dng

+ 4nf1 − sXR2e
if2dng. s27d

The coefficient relations aresfor the constant term, and the
terms of degreen, 2n, and 3n, respectivelyd

R1
2 + R2

2 + 2R3
2 = 8n − 2, s28ad

s2R1
2 + 4R3

2 − 9n + 3dsR2e
if2dn + s2R2

2 + 4R3
2 − 9n + 3d

3sR1e
if1dn = 0, s28bd

sR1
2 + R2

2 − 2n + 1dsR3e
if3d2n = s2R3

2 − 2n + 1d

3sR1e
if1dnsR2e

if2dn, s28cd

s2R1
2 − n + 1dsR2e

if2dn + s2R2
2 − n + 1dsR1e

if1dn = 0.

s28dd

If we uses28ad in s28bd and s28cd we obtain the equa-
tions

s2R1
2 − 7n + 1dsR1e

if1dn + s2R2
2 − 7n + 1dsR2e

if2dn = 0,

s28b8d

s2R3
2 − 2n + 1dsR1e

if1dnsR2e
if2dn + s2R3

2 − 6n + 1d

3sR3e
if3d2n = 0. s28c8d

Taken togethers28dd and s28b8d show that exphisf1−f2dnj
must be real, i.e., =±1. We thus have

s2R1
2 − 7n + 1dR1

n ± s2R2
2 − 7n + 1dR2

n = 0, s28b9d

s2R2
2 − n + 1dR1

n ± s2R1
2 − n + 1dR2

n = 0. s28d8d

Adding these and usings28ad again, we get

s4R3
2 − 8n + 2dsR1

n ± R2
nd = 0.

Thus, when the + sign is used, i.e., for the symmetric con-
figuration of these two polygons, we must have

2R3
2 = 4n − 1. s29d

When the − sign is used, i.e., for the staggered configuration,
we may also haveR1=R2. We now show that in all cases we
are led toR1=R2. If s29d holds, then ins28c8d we have sim-
ply

sR3e
if3d2n = sR1e

if1dnsR2e
if2dn,

which implies

R3
2 = R1R2.

But then bys28ad and s29d

sR1 − R2d2 = R1
2 + R2

2 − 2R3
2 = 0,

or R1=R2. Therefore, the casen3=2n reduces to two nested
polygons and has already been covered in our analysis in
Sec. VI A.

The only new cases of three nested polygons, then, are
for n3=n. Equations24d now becomes

s2R1
2 − n + 1df1 − sXR2e

if2dngf1 − sXR3e
if3dng

+ s2R2
2 − n + 1df1 − sXR3e

if3dngf1 − sXR1e
if1dng

+ s2R3
2 − n + 1df1 − sXR1e

if1dngf1 − sXR2e
if2dng
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= 2nf1 − sXR1e
if1dng + 2nf1 − sXR2e

if2dng

+ 2nf1 − sXR3e
if3dng. s30d

This leads to the following coefficient relations for the terms
of order 0,n, and 2n in X:

2R1
2 + 2R2

2 + 2R3
2 = 9n − 3, s31ad

s2R2
2 + 2R3

2 − 4n + 2dsR1e
if1dn + s2R3

2 + 2R1
2 − 4n + 2d

3sR2e
if2dn + s2R1

2 + 2R2
2 − 4n + 2dsR3e

if3dn = 0, s31bd

s2R1
2 − n + 1dsR2e

if2dnsR3e
if3dn + s2R2

2 − n + 1d

3sR3e
if3dnsR1e

if1dn + s2R3
2 − n + 1d

3sR1e
if1dnsR2e

if2dn = 0. s31cd

We can uses31ad to simplify s31bd somewhat

s2R1
2 − 5n + 1dsR1e

if1dn + s2R2
2 − 5n + 1dsR2e

if2dn

+ s2R3
2 − 5n + 1dsR3e

if3dn = 0. s31b8d

This equation has the form

fsR1deinf1 + fsR2deinf2 + fsR3deinf3 = 0,

where

fsRd = s2R2 − 5n + 1dRn. s31dd

We can recasts31cd in this form as well,

gsR1deinf1 + gsR2deinf2 + gsR3deinf3 = 0, s31c8d

where

gsRd =
2R2 − n + 1

Rn . s31ed

We think of s31b8d and s31c8d as saying that the scalar
products of the “phase vector,”

seinf1,einf2,einf3d

and two different “vectors,”sf1, f2, f3d andsg1,g2,g3d, where
f1= fsR1d , g1=gsR1d, etc., with real components both vanish.
It follows that the phase vector itself is proportional to the
“vector product” of these two real vectors. While the coeffi-
cient of proportionality may be complex, the ratio of any two
components of the phase vector must be real. In other words,
the phase factors,

einsf1−f2d, einsf2−f3d, einsf3−f1d,

are all real, and hence all =±1. The nested polygons are,
therefore, arranged either symmetrically or staggered with
respect to one another.

We analyze this general case in considerable detail be-
low. However, we must subsequently return to the one major
exception when the two aforementioned real vectors are par-
allel. We call this the “degenerate case” and provide an
analysis of the equilibria to which it gives rise in Sec. VI D.

There are, essentially, only two possibilities in the gen-
eral case:sid all three polygons are symmetrically arranged
with respect to one another;sii d two are symmetrically ar-
ranged, and the third is staggered relative to these two.

Thus, the system of equations to be solved for the radii is
either

2R1
2 + 2R2

2 + 2R3
2 = 9n − 3, s32d

along with

s2R1
2 − 5n + 1dR1

n + s2R2
2 − 5n + 1dR2

n + s2R3
2 − 5n + 1dR3

n

= 0, s33ad

2R1
2 − n + 1

R1
n +

2R2
2 − n + 1

R2
n +

2R3
2 − n + 1

R3
n = 0, s33bd

for the symmetrical casesid, or s32d along with

s2R1
2 − 5n + 1dR1

n + s2R2
2 − 5n + 1dR2

n − s2R3
2 − 5n + 1dR3

n

= 0, s34ad

2R1
2 − n + 1

R1
n +

2R2
2 − n + 1

R2
n −

2R3
2 − n + 1

R3
n = 0, s34bd

for the staggered casesii d, where we have assumed the in-
dexing is such that the two polygons that are symmetrically
arranged are 1 and 2, and the staggered polygon is 3.

The simplest case,n=2 in the symmetric configuration,
provides an interesting check on these developments. In this
case Eqs.s32d and s33d become

R1
2 + R2

2 + R3
2 = 15

2 ,

R1
4 + R2

4 + R3
4 = 135

4 ,

1

R1
2 +

1

R2
2 +

1

R3
2 = 6.

Thus,

sR1
2 + R2

2 + R3
2d2 = 225

4 = R1
4 + R2

4 + R3
4

+ 2sR1
2R2

2 + R2
2R3

2 + R3
2R1

2d

or

R1
2R2

2 + R2
2R3

2 + R3
2R1

2 = 45
4 .

Then, from

R1
2R2

2 + R2
2R3

2 + R3
2R1

2

R1
2R2

2R3
2 = 6,

we get

R1
2R2

2R3
2 = 15

8 .

In this special case the vortices are located on a line, which
we take to be thex axis, at x= ±R1, ±R2, ±R3. Thus, the
polynomial

Psxd = sx − z1d ¯ sx − z6d = sx2 − R1
2dsx2 − R2

2dsx2 − R3
2d

= x6 − 15
2 x4 + 45

4 x2 − 15
8 .

But this is justH6, the Hermite polynomial of degree 6sdi-
vided by 64d, as we know independently that it must be.1
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C. Geometrical solution

Solving Eqs.s32d–s34d for generaln algebraically ap-
pears complicated, not to say impossible. However, we may
obtain a concise overview of the solution space by the fol-
lowing geometrical device: LetR1

2, R2
2, and R3

2 be repre-
sented as trilinear coordinates. Then Eq.s32d can be “built
into” the representation by letting the height of the basic
equilateral triangle in this coordinate system equalss9n
−3d /2 ssee Ref. 10 for a general discussion of trilinear coor-
dinates and their uses in fluid mechanicsd. Equationss33ad
ands33bd or s34ad ands34bd now represent two sets of aux-
iliary curves, one for the symmetric case and one for the
staggered case, that can be plotted in the trilinear diagram.
The points of intersection of these curves, two and two, de-
fine the solutions of the problem of equilibria for nested
n-gons.

Figure 1 shows these trilinear plots whenn=9 for sad the
symmetric andsbd the staggered cases. The three axes in the
trilinear coordinate system are indicated. The curves corre-
sponding to Eqs.s33ad ands34ad are shown as dashed lines.
The curves corresponding to Eqs.s33bd ands34bd are shown
as solid lines. The points of intersection are marked either by
solid or open dots. The solid dots give a set of intersections
that correspond to physically different equilibria. The open
dots show the additional equilibria that arise from relabeling
the three radii. For the symmetric case we may freely inter-
change any of the three indices 1, 2, and 3. For the staggered
case only transposition of 1 and 2 is permitted. Thus, from
Fig. 1sad we see that there is just one equilibrium configura-
tion for three symmetrically nested regular nine-gons,
whereas Fig. 1sbd shows that there are five different equilib-
ria for three regular nine-gons when two are symmetrically
nested and one is staggered.

The curves33ad intersects the sides of the equilateral
triangle in six points.sWe discuss the intersections ofs34ad
and the trilinear coordinate axes below.d For example, the
points of intersection with theR1 axis are given by setting
R1=0 in s32d and s33ad, viz.,

R2
2 + R3

2 =
9n − 3

2
,

s2R2
2 − 5n + 1dR2

n + s2R3
2 − 5n + 1dR3

n = 0.

These equations are reminiscent ofs21ad and s22ad. Indeed,
they yield the radii for a centered two-ring equilibrium in
which there is a vortex of circulationnG at the center of two
symmetricn-gons, each with vortices of circulationG at its
vertices. Introducingx=R2/R3 we find the following equa-
tion for x fcf. the reduction ofs21ad and s22ad to s23adg:

s4n − 2dxn+2 − s5n − 1dxn − s5n − 1dx2 + s4n − 2d = 0.

s35d

From the diagrams it appears that there are two solutions to
this equation.

It is not difficult to construct the actual equilibria from
the data in Fig. 1. Newton’s method readily gives the values
of the radiissee Tables I and IId and the arrangement around
the three circles is known. Figure 2 provides pictures of the
six different equilibrium patterns for identical vortices ar-

FIG. 1. Trilinear coordinate plots forn=9 based ons32d for sad the sym-
metric casefEqs.s33ad ands33bdg andsbd the staggered casefEqs.s34ad and
s34bdg. The physically distinct configurations are indicated by solid dots; the
open dots give solutions that arise from these by permutation of indices 1, 2,
and 3.

TABLE I. Radii of symmetrically nestedn-gons; units according to Eqs.
s32d ands34d. If an illustration is provided, the figure panel number is noted.

n R1 R2 R3 Illustration

2 2.350 604 973 7 0.436 077 411 9 1.335 849 074 0 Fig. 4sad
3 2.845 615 597 9 0.801 944 921 8 1.805 368 719 0 Fig. 4sbd
4 3.250 362 127 7 1.088 190 194 7 2.179 676 154 7 Fig. 4scd
5 3.604 522 111 4 1.323 069 827 2 2.501 380 934 8 Fig. 4sdd
6 3.925 078 030 8 1.522 050 411 2 2.788 749 719 5 Fig. 4sed
7 4.221 020 895 1 1.694 752 937 7 3.051 359 546 6

8 4.497 760 084 7 1.847 818 793 9 3.294 801 955 3

9 4.758 869 438 0 1.986 059 846 3 3.522 602 441 2 Fig. 2sad
25 7.876 461 953 1 3.464 098 790 9 6.079 586 060 5 Fig. 4sfd

TABLE II. Radii of nestedn-gons, twosindices 1 and 2d symmetrically
arranged and one staggeredsindex 3d; units according to Eqs.s32d and
s34bd. The figure panel in which the vortex configuration is illustrated is
given.

n R1 R2 R3 Illustration

2 0.696 117 752 5 1.973 444 400 9 1.766 617 466 0 Fig. 6sad
3 1.007 204 248 1 2.427 970 523 5 2.256 213 363 1 Fig. 6sbd
4 1.231 786 477 4 2.800 492 298 2 2.672 067 544 4 Fig. 6scd
5 1.418 509 932 7 3.129 852 520 8 3.031 806 848 8 Fig. 6sdd
6 1.583 669 110 6 3.432 476 716 9 3.348 148 105 4 Fig. 6sed
6 2.428 847 677 7 3.834 088 405 7 2.213 699 405 0 Fig. 6sfd
6 2.719 074 979 6 3.903 123 555 5 1.694 773 662 1 Fig. 6sgd
7 1.734 056 952 1 3.725 948 373 0 3.620 822 449 2 Fig. 6shd
7 2.593 407 316 3 4.133 252 285 2 2.488 064 315 6 Fig. 6sid
7 3.013 185 669 4 4.210 379 067 0 1.787 014 335 1 Fig. 6sjd
8 1.875 519 206 6 4.126 462 929 7 3.735 603 217 1 Fig. 6skd
8 2.763 142 438 6 4.419 917 607 2 2.707 281 331 7 Fig. 6sld
8 3.272 461 184 8 4.492 304 839 5 1.900 051 321 1 Fig. 6smd
9 4.756 040 998 1 3.509 292 661 7 2.016 169 397 3 Fig. 2sbd
9 4.692 035 445 5 2.929 526 510 2 2.898 737 277 7 Fig. 2scd
9 4.508 864 315 0 2.005 129 229 1 3.827 479 505 3 Fig. 2sdd
9 4.174 380 729 7 1.999 879 463 0 4.192 258 061 8 Fig. 2sed
9 3.846 738 493 4 1.995 360 456 8 4.496 792 146 7 Fig. 2sfd
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ranged in regular nine-gons on three nested circles. The five
staggered patterns are displayed in Fig. 2 such that they cor-
respond to the points of intersection shown as solid dots in
Fig. 1 starting at the left-hand border and working clockwise
along the curves34ad.

The diagrams for the symmetrically arranged case do not
change substantially withn. In Fig. 3 we show such dia-
grams forn=2, 3, 4, 5, 6, and 25. Thus, we conclude that for
any n there is justone symmetric arrangement of three
nested, regularn-gons of identical vortices.

For largen the nature of the diagram is thats33ad and
s33bd both approximately are equilateral triangles withs33bd
having sides parallel to the coordinate axes in the trilinear
coordinate system, ands33ad being turned “upside down.”
The values of the intersection points are

2R1
2 < 5n − 1, 2R2

2 < 3n − 1, 2R3
2 < n − 1, s36d

and permutations thereof. Forn=9 numerical solution of
Eqs.s32d, s33ad, ands33bd scf. Table Id gives

R1 = 4.76…, R2 = 3.52…, R3 = 1.99…,

whereas the approximations36d gives the values

R1 = 4.69…, R2 = 3.61…, R3 = 2.0.

In Table I we have collected the numerical values of the three
radii for n=2,…,9 and for n=25. In Fig. 4 we show the
actual configurations of the vortices corresponding to the
panels in Fig. 3.

The staggered configurations offer a richer picture. Re-
peating the construction in Fig. 1sbd for n=2, 3,…, 8 and 25
yields the diagrams in Fig. 5.sThe diagram forn=15 appears
in Fig. 7.d In each diagram the solid curve corresponds to Eq.
s34bd, and the dashed curve to Eq.s34ad. We see that the
portion of the curves34bd that passes through a vertex of the
equilateral triangle asymptotes to one of the linesR1=R3 or
R2=R3. For all diagrams in Fig. 5, except the last one, the
intersections ofs34ad with the R1 and R2 axes occur atR2

=R3 and R1=R3, respectively. Thus, the corresponding cen-
tered equilibria consist of one vortex of circulationnG at the
origin surrounded by a regular 2n-gon, i.e., the two staggered
n-gons of the same size form a regular 2n-gon. fThe inter-
sections of the curves34ad with theR3 axis are, of course, the
same points we found for the symmetric case above.g For
n=25, however, there are three points of intersection with
both theR1 and theR2 axes. Thus, for sufficiently largen

FIG. 2. The six possible equilibrium patterns for three
nested, regular nine-gons of identical vorticessad the
single symmetric pattern;sbd–sfd the five staggered pat-
terns.fThese correspond to the solid dots in Fig. 1sbd
starting from the left and moving clockwise.g

FIG. 3. Trilinear coordinate plots for the symmetric
case of three nestedn-gons whensad n=2, sbd 3, scd 4,
sdd 5, sed 6, andsfd 25. The diagram forn=9 was given
in Fig. 1sad. The diagrams are very similar and lead to
the conclusion that there is just one symmetric
configuration.
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there must exist equilibria with a vortex of strengthnG at the
center surrounded by two staggeredn-gons. Closer analysis
shows that these equilibria arise only fornù17. sFigure 7
shows that this equilibrium does not exist forn=15.d

In general the number of intersections of the two curves
s34ad ands34bd within the equilateral trianglespoints outside
correspond to negative values ofR1, R2, or R3 and, thus, are
unphysicald is determined to sufficient accuracy from the nu-
merically generated plots and may be counted in the various
panels of the diagram. In this way we find the following
number of essentially different staggered configurations of
three nestedn-gons: Forn=2, 3, 4, and 5 we have one con-
figuration; forn=6, 7, and 8 we have three; and fornù9 we
have five. The only two issues that need further analysis/
examination aresid the casen=8 where the plot in Fig. 5sgd
suggests two points of common tangency betweens34ad and
s34bd, and sii d the asymptotic result that there are five con-
figurations for allnù9.

The issue of whethers34ad and s34bd have a common
point of tangency is resolved most simply by performing a
high-resolution plot of the two curves close to the apparent
point of common tangency. This shows unequivocally that,
although the two curves do come very close, there is no
common point. Thus, forn=8 there are just three solutions.

The asymptotic resultsii d follows, at least heuristically,
by noting that for largen the curves34bd must largely consist
of portions for which eitherR1=R3, R2=R3, or the smallest
of R1, R2, and R3 is “pinned down” to the valueÎfsn
−1d /2g. What this means for the curves34bd is quite evident
in the panel Fig. 5shd for n=25. Similarly, the curves34ad for
large n must consist of portions for which eitherR1

=R3, R2=R3, or the largest ofR1, R2, and R3 is Îfs5n
−1d /2g. Again, this is quite obvious from Fig. 5shd. The cen-
ter of the equilateral triangle is, of course, a “forbidden”
point since it corresponds toR1=R2, i.e., would lead to the
overlap of vortices.

Table II provides numerically computed results for the
three radii forn=2,…, 9 sthe allowed permutations of indi-
ces 1 and 2 are not listedd. In Fig. 6 we have plotted the 13
configurations given by the data in Table II for 2ønø8.
fFigures 2sbd–2sfd gave the configurations forn=9.g Several
of these equilibria superficially have the appearance of two-
ring configurations with twice as many vortices in one ring
as in the otherfcf. Figs. 2scd and 2sed; Figs. 6sbd–6sdd, 6shd,
6sid, and 6sldg. Table II shows that, indeed, even for these
smaller values ofn, where the asymptotic approximation
cannot be expected to hold with much accuracy, one solution

FIG. 4. Equilibrium patterns of three nested, regular
n-gons arranged symmetrically forsad n=2, sbd 3, scd 4,
sdd 5, sed 6, andsfd 25.

FIG. 5. Trilinear diagram plots for the staggered case of
three nestedn-gons whensad n=2, sbd 3, scd 4, sdd 5, sed
6, sfd 7, sgd 8, andshd 25. The diagram forn=9 was
given in Fig. 1sbd. The number of intersection points
increases from one forn=2, 3, 4, and 5, to three for
n=6, 7, 8, and to five fornù9.
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usually has eitherR1<R3 or R2<R3. From our earlier work
we know that a two-ring equilibrium consisting of a regular
n-gon and a regular 2n-gon is impossible.

The diagram forn=25 in Fig. 5shd gives, in effect, an
asymptotic, approximate solution to the problem of vortex
triple rings for largen. Consider Fig. 7 where we have shown
the diagram corresponding to those in Fig. 5 forn=15. We
have indicated the five points of intersection ofs34ad and
s34bd that yield physically distinct equilibria denoted as
A, B, C, D, and E. The radii for these five equilibria are
given by the following approximations:

A: R1 <Î5n − 1

2
, R2 <Î3n − 1

2
, R3 <În − 1

2
,

B: R1 <Î5n − 1

2
, R2 <Î2n − 1

2
, R3 <Î2n − 1

2
,

C: R1 <Î5n − 1

2
, R2 <În − 1

2
, R3 <Î3n − 1

2
,

D: R1 <Î4n − 1

2
, R2 <În − 1

2
, R3 <Î4n − 1

2
,

E: R1 <Î3n − 1

2
, R2 <În − 1

2
, R3 <Î5n − 1

2
.

s37d

To obtain the approximation for pointA set theR1 term of
s34ad to zero, theR3 term of s34bd to zero, and then substi-
tute the results intos32d. To obtain the approximation for
point B use the same value ofR1 as for pointA but now set
R2=R3, and so on.sThe approximationA is the one we found
in s36d for the single symmetric configuration.d

By way of example, forn=15 we have

FIG. 6. The unique staggered triple-ring equilibria for
sad n=2 sfirst reported in Aref and Vainchtein, 1998d;
sbd n=3, scd 4, and sdd 5. The three possibilities for
se–gd n=6, sh–jd 7, andsk–md 8.

057104-11 Vortex triple rings Phys. Fluids 17, 057104 ~2005!

Downloaded 24 May 2005 to 128.173.147.139. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



În − 1

2
= 2.645 75…,

Î2n − 1

2
= 3.807 89…, Î3n − 1

2
= 4.690 42…,

Î5n − 1

2
= 6.082 76…, Î4n − 1

2
= 5.431 39…,

whereas direct numerical solution ofs32d, s34ad, and s34bd
gives the following values for the three radii:

R1 R2 R3

A: 6.104 677 125 0, 4.661 522 163 2, 2.646 342 442 3,

B: 6.082 769 725 2, 3.808 488 643 1, 3.807 272 872 6,

C: 6.053 083 274 9, 2.646 208 640 6, 4.728 399 591 6,

D: 5.431 358 827 7, 2.645 751 298 5, 5.431 421 669 5,

E: 4.728 999 913 4, 2.645 296 996 7, 6.053 012 772 0.

We show these five equilibria also in Fig. 7.

D. The degenerate case

We return to the special case when the vectorssf1, f2,
and f3d andsg1, g2, andg3d, sees31dd ands31ed, are parallel.
In this case we have

f1g2 = f2g1, f2g3 = f3g2, f3g1 = f1g3, s38d

or

s2R1
2 − 5n + 1ds2R2

2 − n + 1dR1
2n

= s2R2
2 − 5n + 1ds2R1

2 − n + 1dR2
2n, s38ad

s2R2
2 − 5n + 1ds2R3

2 − n + 1dR2
2n

= s2R3
2 − 5n + 1ds2R2

2 − n + 1dR3
2n, s38bd

s2R3
2 − 5n + 1ds2R1

2 − n + 1dR3
2n

= s2R1
2 − 5n + 1ds2R3

2 − n + 1dR1
2n. s38cd

We only need two of these. The third then follows from these
two. fThe radii in s38d are all .0, and if any term in the

parentheses vanishes, all three radii must be equal.g It is easy
to plot these three curves in the trilinear coordinate system
and to identify the points of intersection. Although it would
be sufficient to plot just two of the equations, plotting all
three assists in identifying the solutions that arise from one
another by permutation of indices.

Once a solution to Eqs.s38ad–s38cd has been found,
s31b8d or s31c8d gives

f1 + f2e
insf2−f1d + f3e

insf3−f1d = 0. s39ad

From this equation we obtain

cosfnsf2 − f1dg =
f3
2 − f2

2 − f1
2

2f1f2
,

s39bd

cosfnsf3 − f1dg = −
f3
2 − f2

2 + f1
2

2f1f3
.

If the expressions on the right-hand sides are between −1 and
1, we have a solution for the configuration of 3n vortices!
These limits for both Eqs.s39bd are easily seen to be embod-
ied in the conditionsf1+ f2+ f3ds−f1+ f2+ f3dsf1− f2+ f3dsf1

+ f2− f3d=0. Since the case of a single ring,R1=R2=R3, and
thus f1= f2= f3, is a solution tos38d ands39d, albeit an unin-
teresting one, and since the expression just written is positive
for this solution, we may replaces39bd by the simpler crite-
rion

sf1 + f2 + f3ds− f1 + f2 + f3dsf1 − f2 + f3dsf1 + f2 − f3d

ù 0. s39cd

For example, forn=3 we produce the trilinear diagram
shown in Fig. 8sad. In this diagram we have indicated all the
points of intersection described by Eqs.s38ad ands38bd. The
center of the diagram has all three radii equal and thus all
vortices on a circle. We have covered this case above. The
three solid dots are the three different solutions—the open
dots arise from these by permutation of indices. We note that
in this case all solutions have two equal radii. By Newton’s
method we obtain the following three solutions for the radii:

FIG. 7. Graphical analysis for largen, heren=15, showing the five inter-
section points in the trilinear plot and the five equilibria to which they
correspond.
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R1 = 3.167 603 205 9, R2 = R3 = 0.991 536 668 5

fpoint A in Fig. 8sadg,

R1 = 2.312 570 119 1, R2 = R3 = 1.823 735 102 0

fpoint B in Fig. 8sadg,

R1 = 1.077 149 466 1, R2 = R3 = 2.328 062 394 8

fpoint C in Fig. 8sadg.

When the right-hand sides ofs39bd are evaluated for these
values of the radii, we find that pointsB andC lead to solu-
tions for the configuration. PointA, however, produces val-
ues for the cosine ins39bd that are numerically larger than 1
and so does not lead to a solution. We may also arrive at this
conclusion graphically by plotting the boundary curve of the
regions39cd. This curve is shown in Fig. 8sdd superimposed
on the earlier diagram Fig. 8sad. It is clear that pointsB and
C are within the region defined by the inequalitys39cd. Point
A is not. fFor n=2 all solution points ofs38ad–s38cd are
disallowed by the angle conditions39cd.g

Equationss39bd only produce the angles that rings 2 and
3 are rotated relative to ring 1 up to the ambiguity in the sign
of the arccos of the right-hand side.sThe addition of 2p
times an integer is not an issue, since this simply leads to a
change in indexing of the vortices around a given ring.d The
only reliable way to decide which sign to use in general
would be to return to the basic equations to be solved, Eq.
s1d, and successively substitute in the finite number of pos-
sibilities. In this particular example, sinceR2=R3, s39bd sim-
plifies considerably

cosfnsf2 − f1dg = cosfnsf3 − f1dg = −
f1

2f
, s40ad

where f is the common value off2 and f3, and froms39ad,

sinfnsf2 − f1dg = − sinfnsf3 − f1dg. s40bd

It follows from these that

f1 =
f2 + f3

2
, s40cd

and that we can take either solution ofs40ad modulo relabel-
ing of the two rings. In Eq.s40cd we may assume that the
coordinates have been rotated such thatf1=0, so thats40cd
signifies thatf3=−f2. In this way we produce the two con-
figurations shown assbd andscd in Fig. 8. The configuration
in Fig. 8scd is one of the few unstable configurations in-
cluded in the Los Alamos catalog as 94.

As we pursue the graphical construction of the solutions
of s38ad–s38cd to highern, we discover that fornù6 there
are solutions of these equations withR1, R2, andR3 all dif-
ferent. However, the conditions39cd rules them all out as
three-ring vortex equilibria. Figure 9 shows the trilinear plots
for n=4, 5, 6, 7, 8, and 9. Fornù7 three “forbidden islands”
appear within the diagram due to the angle equations39cd,
and the area available for solutions becomes more and more
restricted asn increases. We have indicated by small open
circles the two available equilibria withR2=R3. The remain-
ing points of intersection of all three curves are either related
to these by symmetry or correspond to a single circle. We
conclude, and this may also be argued analytically from
s38ad–s38cd, that in the degenerate case the only possible
solutions have two radii equal for alln.

Let the two equal radii beR2 and R3 and let us denote
their common value byR. Then we have simply

2R1
2 = 9n − 3 − 4R2,

FIG. 8. sad Trilinear diagram for the “degenerate case”
whenn=3. The three curvesssolid, dashed, and dottedd
correspond to the three equationss38ad–s38cd. The
three points of intersectionsA, B, and C sshown by
solid dotsd give solutions of Eqs.s38d. The open dots
correspond to solutions that arise fromA, B, andC by
permutation of indices. The centered dot corresponds to
all vortices being on a single circle. PointsB and C
correspond to the configurations shown insbd and scd,
respectively. When the angle constraints39cd is in-
cluded, panelsdd, point A is ruled out.
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s2R1
2 − 5n + 1ds2R2 − n + 1dR1

2n

= s2R2 − 5n + 1ds2R1
2 − n + 1dR2n, s328d

as the problem to be solved. From these two equations we
obtain the polynomial equation

sr − 2n + 1dsr − n + 1ds9n − 3 − 2rdn

= sr − 5n + 1dsr − 4n + 1drn, s41d

wherer=2R2. This equation is of ordern+2.
One solution ofs41d is r=3n−1, the value correspond-

ing to the center of the equilateral triangle. Settingr=2n
−1+« we get

«sn + «ds5n − 1 − 2«dn = s3n − «ds2n − «ds2n − 1 +«dn.

For small« we get to leading order that

« =
6n

S5n − 1

2n − 1
Dn

−
6n2 − 10n + 5

2n − 1

.

For largen this is, indeed, a small quantity. For example, for
n=8, «<0.02. Another solution ofs41d is therefore quite
close to 2n−1 for largen. Similarly one finds thats41d has
solutions close ton−1, 4n−1, and 5n−1.

Solutions greater thans9n−3d /2 are not compatible with
s328d. Closer analysis shows that the only solutions ofs41d
that potentially produce three-ring equilibria arer<n
−1,2n−1, and 4n−1. When we include the angle condition
s39cd, however, the first of these is ruled out and we are left
with two configurations for eachn which, continuing the
tabulations37d, we label

F: R1 <Î5n − 1

2
, R2 = R3 <Î2n − 1

2
,

G: R1 <În − 1

2
, R2 = R3 <Î4n − 1

2
.

Already for moderaten the asymptoticR values listed pro-
vide excellent approximations to the actual radii.fNote that
caseF gives 0 for the value of the cosines ins40ad since
f1=0 for this value ofR1. For the actual solution this value is
small but nonzero.g

In Fig. 10 we show the two possible configurations in
the “degenerate case” forn=4, 5, 6, and 10. There is some
similarity between the two-ring configurationsF and the
prior three-ring configurationsB. In the same vein the two-
ring configurationsG resemble the three-ring configurations

FIG. 9. Trilinear coordinate plots for the “degenerate
case” whensad n=4, sbd 5, scd 6, sdd 7, sed 8, andsfd 9.
Note the key role of the angle constraints39cd, given by
the heavier curve, in disqualifying several of the solu-
tions points of Eqs.s38d.

FIG. 10. Equilibria in the “degenerate case” forsa–bd
n=4, sc–dd 5, se–fd 6, andsg–hd 10.
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D. Interestingly, the equilibrium in Fig. 10sad is listed as one
of the linearly stable equilibria in the Los Alamos catalogsas
123d and the state in Fig. 10scd is listed as the linearly stable
152. sOn the other hand, the state corresponding toD for n
=5 is listed as the linearly unstable 153.d The state in Fig.
10sed is shown in the Los Alamos catalog as the linearly
unstable 186.

VII. CENTERED NESTED REGULAR POLYGONS

Let us now return to the developments of Sec. V and
consider centered configurations of the type just analyzed,
i.e.,za , a=1,… ,3n=N are distributed on three nested, regu-
lar n-gons, but in addition there is a vortex at the origin for a
total of N+1 vortices in the configuration.

The derivation ins48d still holds term by term if we
agree to takeN0=N. We also obtains118d in the same way as
in Sec. V. We then get in place ofs20d

o
s=1

p
nss2Rs

2 − ns − 1d
1 − sXRse

ifsdns
= o

s,r=1

p

8
nsnr

f1 − sXRse
ifsdnsgf1 − sXRre

ifrdnrg
.

s208d

A. Two centered, nested polygons

For two centered, nestedn-gons we have as the counter-
part of s21ad and s22ad

R1
2 + R2

2 = 2n + 1, s21a8d

s2R1
2 − 3n − 1dR1

n + s2R2
2 − 3n − 1dR2

n = 0, s22a8d

for the symmetric case, and

s2R1
2 − 3n − 1dR1

n − s2R2
2 − 3n − 1dR2

n = 0 s22b8d

for the staggered case. With the substitutionj=R1/R2 we
now get the equation

sn + 1djn+2 − s3n + 1djn − s3n + 1dj2 + n + 1 = 0,

for the symmetrical case, and

sn + 1djn+2 − s3n + 1djn + s3n + 1dj2 − sn + 1d = 0,

for the staggered case. These results are also known
independently.1

B. Three centered, nested polygons

For three nested polygons the counterpart ofs30d be-
comes

s2R1
2 − n − 1df1 − sXR2e

if2dngf1 − sXR3e
if3dng

+ s2R2
2 − n − 1df1 − sXR3e

if3dngf1 − sXR1e
if1dng

+ s2R3
2 − n − 1df1 − sXR1e

if1dngf1 − sXR2e
if2dng

= 2nf1 − sXR1e
if1dng + 2nf1 − sXR2e

if2dng

+ 2nf1 − sXR3e
if3dng. s308d

The counterpart ofs32d then is

2R1
2 + 2R2

2 + 2R3
2 = 9n + 3, s329d

which is also obvious directlyfcf. s5adg. The counterparts of
Eqs.s33d and s34d become

s2R1
2 − 5n − 1dR1

n + s2R2
2 − 5n − 1dR2

n + s2R3
2 − 5n − 1dR3

n

= 0, s33a8d

2R1
2 − n − 1

R1
n +

2R2
2 − n − 1

R2
n +

2R3
2 − n − 1

R3
n = 0, s33b8d

for the symmetric case and

s2R1
2 − 5n − 1dR1

n + s2R2
2 − 5n − 1dR2

n − s2R3
2 − 5n − 1dR3

n

= 0, s34a8d

2R1
2 − n − 1

R1
n +

2R2
2 − n − 1

R2
n −

2R3
2 − n − 1

R3
n = 0, s34b8d

for the staggered case.
We leave it to the reader to verify that the symmetric

case forn=2 leads to the vortices being situated at the roots
of H7, the seventh Hermite polynomial. This is a well known
result.1

The analysis proceeds much as in Sec. VI C. The trilin-
ear diagrams can be constructed as before. The height is now
s9n+3d /2 rather thans9n−3d /2. The curves corresponding
to the two pairs of Eqs.s33a8d, s33b8d, s34a8d, ands34b8d are
qualitatively similar to the curves for the noncentered case.
There is one symmetric centered arrangement of three regu-
lar n-gons. Forn=2, 3, 4, 5, and 6 there is just one staggered
centered configuration of three regularn-gons. Forn=7,8
there are three, and fornù9 there are five. The asymptotic
approximation for these five states is

A8: R1 <Î5n + 1

2
, R2 <Î3n + 1

2
,

R3 <În + 1

2
,

B8: R1 <Î5n + 1

2
, R2 <Î2n + 1

2
,

R3 <Î2n + 1

2
,

C8: R1 <Î5n + 1

2
, R2 <În + 1

2
,

R3 <Î3n + 1

2
,

D8: R1 <Î4n + 1

2
, R2 <În + 1

2
,

R3 <Î4n + 1

2
,
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E8: R1 <Î3n + 1

2
, R2 <În + 1

2
,

R3 <Î5n + 1

2
. s378d

The centered triple rings look very much like the corre-
sponding noncentered ones—except that there is a vortex at
the center. Since there were three noncentered vortex triple
rings for n=6, one might wonder what the unique centered
triple ring looks like. As might have been anticipated, it is
the configuration in Fig. 6sed that is “modified” to accommo-
date a central vortex. This configuration approximates a cir-
cular cutout of a triangular lattice. Figure 11 shows the tri-
linear diagrams for centered triple rings whenn=6, 7, 8, and
25. Figure 12 provides examples of centered triple ring equi-
libria, including then=2 case, where the vortices are ar-
ranged on perpendicular lines, the unique centered triple ring
for n=6 sthis configuration is given in the Los Alamos cata-

log as the linearly stable 191d, the three centered triple rings
for n=8 fFig. 12scd is listed in the Los Alamos catalog as the
linearly stable configuration 256g, and the five centered triple
rings for n=9.

We remarked above that the points of intersection of
s34ad with theR1 or R2 axis correspond to staggered configu-
rations of twon-gons with a vortex of strengthnG at the
center. We noted that such states only exist fornù17. Simi-
larly, the points of intersection ofs34a8d with the R1 or R2

axis correspond to staggered configurations of twon-gons
with a vortex of strengthsn+1dG at the center. One might
think that the addition of a single unit of circulation at the
center would be insignificant so far as the existence of such
an equilibrium is concernedsalthough the values of the radii
might changed. However, this addition turns out to have a
substantial effect. We find that one must havenù20 before a
centered, staggered configuration of the type in question is
possible.

C. The degenerate case for three centered, nested
polygons

The degenerate case of centered triple rings requires us
to solves328d and two of

s2R1
2 − 5n − 1ds2R2

2 − n − 1dR1
2n

= s2R2
2 − 5n − 1ds2R1

2 − n − 1dR2
2n, s38a8d

s2R2
2 − 5n − 1ds2R3

2 − n − 1dR2
2n

= s2R3
2 − 5n − 1ds2R2

2 − n − 1dR3
2n, s38b8d

s2R3
2 − 5n − 1ds2R1

2 − n − 1dR3
2n

= s2R1
2 − 5n − 1ds2R3

2 − n − 1dR1
2n. s38c8d

The angle condition is now

F1 + F2e
insf2−f1d + F3e

insf3−f1d = 0, s39a8d

where

FIG. 11. Trilinear diagram plots for the case of three centered, nested,
staggeredn-gons whensad n=6, sbd 7, scd 8, andsdd 25.

FIG. 12. Centered, nested, staggeredn-gon configura-
tions. The single configuration forsad n=2, sbd n=6
sLos Alamos catalog 191d. scd–sed The three configura-
tions for n=8 fpanel scd is Los Alamos catalog 256g.
sfd–sjd The five configurations forn=9.
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FsRd = s2R2 − 5n − 1dRn = fsRd − 2Rn s42d

fcf. s31ddg. The solutions combine aspects of “the centered
case” analyzed above and the degenerate case analyzed in
Sec. VI D.

Figure 13, the counterpart of Fig. 9, shows examples of
the trilinear diagrams forn=3, 4, 5, 6, 7, and 8. Again, for-
bidden islands emerge. The pattern, established by the time
we reachn=6, of having two solution pointssapart from the
trivial R1=R2=R3d within the boundary defined by the angle
conditions39cd appears to persist for highern. We conclude
that there are two solutions of this family for eachn. Once
again, these solutions all have two radii equal. Interestingly,
there is no solution forn=3 sother than all vortices being on
the same ringd.

As n increases we have to ever better accuracy that the
two solutions are given by an extension ofs378d:

F8: R1 <Î5n + 1

2
, R2 = R3 <Î2n + 1

2
,

G8: R1 <În + 1

2
, R2 = R3 <Î4n + 1

2
.

Figure 14 provides sample configurations forn=4, 5, 6,
7, 8, and 9. Some of these appear in the Los Alamos catalog.
Thus, then=5 configuration in Fig. 14scd is the linearly
stable 162 of the catalog and then=6 configuration, Fig.
14sed, is the linearly unstable 192. sInterestingly the more
symmetric, centered, staggered three-ring configuration in
Fig. 12sbd is linearly stable.d The configuration in Fig. 14sgd
appears in the Los Alamos catalog as the linearly unstable
222. fAgain, the more symmetric, centered, staggered three-
ring configuration, then=7 counterpart of Fig. 12sbd or
12scd, is linearly stable.g Finally, Fig. 14sid is configuration
287 of the Los Alamos catalog, listed as linearly unstable.

VIII. CONCLUSIONS AND DISCUSSION

Using an analytical method of moment equations, which
may have broader applicability, we have achieved a rather
comprehensive analytical understanding of a family of “vor-
tex crystals” wherein identical vortices are distributed on
three concentric, regular polygons with or without a vortex

in the center. Even though the geometry in these states is
constrained, there remains a measure of richness in the solu-
tions, particularly in the case where one of the three rings is
staggered relative to the other two. The analysis allows us to
describe precisely several of the states found numerically and
reported previously in the literature, particularly in the com-
prehensive collection known as the Los Alamos catalog.

It may be beneficial to summarize the results in a table
giving for eachn the number of different configurations in
the different categories that we have explored, viz., symmet-
ric, staggered, degenerate, centered symmetric, centered
staggered, and centered degenerate. This summary may be
found in Table III.

Perusing the catalog with the benefit of the insights ob-
tained here one still sees many configurations, particularly

FIG. 13. Trilinear diagram plots for the “degenerate
case” of three centered, nestedn-gons whensad n=3,
sbd 4, scd 5, sdd 6, sed 7, andsfd 8.

FIG. 14. Centered, nested “degenerate” triple vortex ring configurations for
sad n=4, sbd 4, scd 5, sdd 5, sed 6, sfd 7, sgd 8, and shd 9. The second
configuration forn=7, 8, and 9 resemblessed but with successively more
“spokes.”
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those of low symmetry, for which we have no analytical
understanding whatsoever. Later additions to this list include,
of course, the asymmetric configurations found by Aref and
Vainchtein.11

We have discussed linear stability issues only in passing
although historically these have been paramount in the
analyses of vortex equilibria. In Ref. 1 it is argued that this
emphasis is somewhat misplaced, and examples are given of
how unstable equilibria often play a significant role in the
dynamics of few-vortex systems. When a configuration is
included in the Los Alamos catalog, we have cited the result
of the linear stability calculation provided there. According
to these results most of the triple rings found appear to be
linearly unstable.

It is important to stress the geometrical restriction to
nested, regularn-gons underlying the analysis in much of
this paper. There are equilibria in which the vortices are ar-
ranged on three rings that are not captured by the above
analysis because the vortices do not form regular polygons.
We give four examples in Fig. 15, two each with eight and
ten vortices. These states clearly have the vortices distributed
on three circles and, in that sense, are “vortex triple rings.”

However, the four vortices on the same circle in these con-
figurations are not arranged in a square. The moment method
pursued herein can be applied to determine the coordinates
of these configurations analytically. In Appendix we show
how to obtain the two configurations for eight vortices
shown in the top row of Fig. 15 and, in the process, to show
that there are no others with that particular symmetry.
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APPENDIX: DETERMINATION OF EIGHT-VORTEX
EQUILIBRIA SHOWN IN FIG. 15

Let us apply the moment method outlined in Sec. III to
configurations in which the vortices appear in pairs at dia-
metrically opposite points, i.e.,N=2n and the vortex posi-
tions are ±za , a=1,… ,n. We may think of this asn-nested
digons. Hence, Eq.s20d with all ns=2 gives

o
a=1

n

s2uzau2 − 1dna = o
a,b=1

aÞb

n

nanb, sA1d

where the notationna means

na =
2

1 − sXzad2 ,

cf. s18ad. We may now study Eq.sA1d for increasing values
of n.

For n=1 we have just two vortices at ±z, where uzu
=1/Î2. Any configuration with the two vortices at equal
distances from the origin is a steadily rotating state.

For n=2 sN=4d Eq. sA1d gives specializations forn=2
of Eqs.s21ad, s22ad, ands22bd, sinceuzau=Ra, a notation that
we shall use henceforth. Forn=3 we get, similarly, equations
that have already been derived and discussed previously,
viz., Eq. s30d with what is there calledn set to 2.

We break a new ground withn=4. Our basic Eq.sA1d
now reads

TABLE III. Summary of the number of states of the different kinds for increasingn. The column headings are
Sym=symmetric, Stag=staggered, Deg=degenerate, C Sym=centered symmetric, C Stag
=centered staggered, C Deg=centered degenerate, and the Total.

n Sym Stag Deg C Sym C Stag C Deg Total

2 1 1 0 1 1 0 4

3 1 1 2 1 1 0 6

4 1 1 2 1 1 2 8

5 1 1 2 1 1 2 8

6 1 3 2 1 1 2 10

7 1 3 2 1 3 2 12

8 1 3 2 1 3 2 12

ù9 1 5 2 1 5 2 16

FIG. 15. Examples of equilibria in which the vortices are arranged on three
concentric rings but do not form regular polygons.sad n=8, sbd 8, scd 10
sthis is configuration 102 in the Los Alamos catalogd, and sdd 10. These
states include quadrilaterals that are not squares.
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s2R1
2 − 1dn1 + s2R2

2 − 1dn2 + s2R3
2 − 1dn3 + s2R4

2 − 1dn4

= 2sn1n2 + n2n3 + n3n1 + n1n4 + n2n4 + n3n4d. sA2d

Clearing the denominators we have

s2R1
2 − 1ds1 − X2z2

2ds1 − X2z3
2ds1 − X2z4

2d + s2R2
2 − 1ds1 − X2z1

2ds1 − X2z3
2ds1 − X2z4

2d + s2R3
2 − 1ds1 − X2z1

2ds1 − X2z2
2ds1 − X2z4

2d

+ s2R4
2 − 1ds1 − X2z1

2ds1 − X2z2
2ds1 − X2z3

2d

= 4fs1 − X2z1
2ds1 − X2z2

2d + s1 − X2z2
2ds1 − X2z3

2d + s1 − X2z3
2ds1 − X2z1

2d + s1 − X2z1
2ds1 − X2z4

2d + s1 − X2z2
2ds1 − X2z4

2d

+ s1 − X2z3
2ds1 − X2z4

2dg. sA3d

The right-hand side may be simplified to

4f6 − 3X2sz1
2 + z2

2 + z3
2 + z4

2d + X4sz1
2z2

2 + z2
2z3

2 + z3
2z1

2 + z1
2z4

2

+ z2
2z4

2 + z3
2z4

2dg. sA4d

Setting the overall coefficient of each power ofX to zero in
sA3d we obtain

R1
2 + R2

2 + R3
2 + R4

2 = 14, sA5ad

s15 − 2R2
2 − 2R3

2 − 2R4
2dz1

2 + s15 − 2R1
2 − 2R3

2 − 2R4
2dz2

2

+ s15 − 2R1
2 − 2R2

2 − 2R4
2dz3

2

+ s15 − 2R1
2 − 2R2

2 − 2R4
2dz4

2 = 0, sA5bd

sR3
2 + R4

2 − 3dz1
2z2

2 + sR1
2 + R4

2 − 3dz2
2z3

2 + sR2
2 + R4

2 − 3dz3
2z1

2

+ sR2
2 + R3

2 − 3dz1
2z4

2 + sR1
2 + R3

2 − 3dz2
2z4

2

+ sR1
2 + R2

2 − 3dz3
2z4

2 = 0, sA5cd

s2R1
2 − 1dz2

2z3
2z4

2 + s2R2
2 − 1dz1

2z3
2z4

2 + s2R3
2 − 1dz1

2z2
2z4

2

+ s2R4
2 − 1dz1

2z2
2z3

2 = 0. sA5dd

Using the first of these in the second and the third we obtain

s2R1
2 − 13dz1

2 + s2R2
2 − 13dz2

2 + s2R3
2 − 13dz3

2

+ s2R4
2 − 13dz4

2 = 0, sA5b8d

sR1
2 + R2

2 − 11dz1
2z2

2 + sR2
2 + R3

2 − 11dz2
2z3

2

+ sR3
2 + R1

2 − 11dz3
2z1

2 + sR1
2 + R4

2 − 11dz1
2z4

2

+ sR2
2 + R4

2 − 11dz2
2z4

2 + sR3
2 + R4

2 − 11dz3
2z4

2 = 0,

sA5c8d

2R1
2 − 1

z1
2 +

2R2
2 − 1

z2
2 +

2R3
2 − 1

z3
2 +

2R4
2 − 1

z4
2 = 0. sA5d8d

Let us now specialize to the cases illustrated in Fig. 15
where for eight vortices we have configurations—until now
only known from numerical experiments—in which in our
current notationz1 is real,z2 is either real or pure imaginary,
and z3 and z4 are complex conjugates. We have, therefore,
two cases to exploresid z1=x1, z2=x2, z3=j+ ih, and z4=j
− ih; and sii d z1=x, z2= iy , z3=j+ ih, andz4=j− ih.

In casesid the equations above reduce to

x1
2 + x2

2 + 2R2 = 14, sA6ad

s2x1
2 − 13dx1

2 + s2x2
2 − 13dx2

2 + s2R2 − 13dsz2 + z̄2d = 0,

sA6bd

sx1
2 + x2

2 − 11dx1
2x2

2 + sx2
2 + R2 − 11dx2

2z2

+ sx1
2 + R2 − 11dx1

2z2 + sx1
2 + R2 − 11dx1

2z̄2

+ sx2
2 + R2 − 11dx2

2z̄2 + s2R2 − 11dR4 = 0, sA6cd

4 −
1

x1
2 −

1

x2
2 +

2R2 − 1

R4 sz2 + z̄2d = 0, sA6dd

wherez=j+ ih, andR= uzu. The third of these can be simpli-
fied further,

sx1
2 + x2

2 − 11dx1
2x2

2 + fx1
4 + x2

4 + sR2 − 11dsx1
2 + x2

2dgsz2 + z̄2d

+ s2R2 − 11dR4 = 0.

We may use

x1
4 + x2

4 = sx1
2 + x2

2d2 − 2x1
2x2

2 = 4s7 − R2d2 − 2x1
2x2

2

andsA6ad to eliminate the sum of the fourth powers and the
sum of the squares ofx1 andx2 in favor of R. In this way we
produce the following three equations:

8s7 − R2d2 − 4x1
2x2

2 − 26s7 − R2d + s2R2 − 13dsz2 + z̄2d = 0,

sA7ad

s3 − 2R2dx1
2x2

2 + 2sR4 − 10R2 + 21 −x1
2x2

2dsz2 + z̄2d

+ s2R2 − 11dR4 = 0, sA7bd

4x1
2x2

2R4 − 2s7 − R2dR4 + s2R2 − 1dx1
2x2

2sz2 + z̄2d = 0,

sA7cd

involving the three quantitiessx1x2d2, R2, and z2+ z̄2. The

unique solution of Eqs.sA7d for which sz2+ z̄2d /2R2 is nu-
merically less than 1 is found to be

x1x2 = 1.672 596 148 5, R= 2.059 269 991 7,
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z2 + z̄2 = − 4.873 020 829 3,

to ten decimal places. From this we easily get the vortex
coordinates

±1.827 170 396 2, ± 0.949 758 517 8,

0.0, ± 2.225 784 485 3,

0.0, ± 0.751 463 656 7, sA8d

which agree with the values previously found by direct nu-
merical solution of Eq.s1d using the “ghost vortex method”
of Aref and Vainchtein.11 This configuration is shown in Fig.
15sbd.

Casesii d proceeds similarly. The counterparts of Eqs.
sA6d are

x2 + y2 + 2R2 = 14, sA9ad

s2x2 − 13dx2 − s2y2 − 13dy2 + s2R2 − 13dsz2 + z̄2d = 0,

sA9bd

− sx2 + y2 − 11dx2y2 − sy2 + R2 − 11dy2z2

+ sx2 + R2 − 11dx2z2 + sx2 + R2 − 11dx2z̄2

− sy2 + R2 − 11dy2z̄2 + s2R2 − 11dR4 = 0, sA9cd

−
1

x2 +
1

y2 +
2R2 − 1

R4 sz2 + z̄2d = 0. sA9dd

We use the transformation

x4 − y4 = sx2 + y2dsx2 − y2d = 2s7 − R2dsx2 − y2d

to produce fromsA9d the following counterparts of Eqs.
sA7d:

s15 − 4R2dsx2 − y2d + s2R2 − 13dsz2 + z̄2d = 0, sA10ad

s2R2 − 3dx2y2 + s3 − R2dsx2 − y2dsz2 + z̄2d + s2R2 − 11dR4

= 0, sA10bd

sx2 − y2dR4 + x2y2s2R2 − 1dsz2 + z̄2d = 0. sA10cd

From sA10ad and sA10cd we get eithersad x2=y2, i.e., x=y
=a, since we can choose the signs ofx and y by relabeling
the vortices, orsbd

x2y2 = −
2R2 − 13

s2R2 − 1ds4R2 − 15d
R4, sA11ad

x2 − y2 = ± 2R2Îs2R2 − 13ds4R6 − 40R4 + 109R2 − 51d
sR2 − 3ds2R2 − 1ds4R2 − 15d2 .

sA11bd

In order to obtainsA11ad, we combinedsA10ad andsA10cd,
while sA11bd is derived from sA10bd using sA11ad and
sA10ad. We now note that

4x2y2 = sx2 + y2d2 − sx2 − y2d2 = 4s7 − R2d2 − sx2 − y2d2.

sA11cd

In casesad this for sA9adg implies that the common value of
x andy, calleda above, is given by

a2 = 7 −R2.

Substituting this value intosA10bd gives an equation forR,
viz.,

s2R2 − 3ds7 − R2d2 + s2R2 − 11dR4 = 0,

or

4R6 − 42R4 + 140R2 − 147 = 0,

a cubic equation inR2 that has three real, positive roots,R2

=7/2, ands7± Î7d /2. The polar anglef of vortex 3, given
in general by

z2 + z̄2

2R2 = cos 2f,

is p /4 since the left-hand side vanishes. Thus, vortices 1 and
2 and their opposites are on thex and y axes, respectively,
vortices 3 and 4 and their opposites are on the linesx= ±y. If
R2=7/2, a=R and the vortices form the regular octagon. If
R2=s7+Î7d /2 , a2=s7−Î7d /2, and the configuration con-
sists of two nested squares. The last possibilityR2=s7
− Î7d /2 , a2=s7+Î7d /2, again leads to two nested squares
with the vortices relabeled.

In case sbd substitution of sA11ad and sA11bd into
sA11cd yields an equation forR2. After some elementary
transformations this equation becomes

4s2R2 − 13dsR2 − 1dsR2 − 4dsR2 − 6dR4

= sR2 − 3ds2R2 − 1ds4R2 − 15d2sR2 − 7d2, sA12d

or

8R12 − 220R10 + 2330R8 − 11 985R6 + 30 693R4

− 34 755R2 + 11 025 = 0.

This equation has six real, positive solutions. For each of
them we can check the value of

z2 + z̄2

2R2 = cos 2f,

wheref is the polar angle of vortex 3. If the ratio on the
left-hand side is between −1 and +1, we have a possible
equilibrium configuration. It turns out that only for one so-
lution of sA12d, R2=4.685 491 369 0, is this the case. We
now easily produce the coordinates of this configuration

±1.215 717 238 5, ± 1.790 955 880 2,

±1.997 963 458 2, 0.0,

0.0, ± 0.798 222 576 5. sA13d

This configuration was shown in Fig. 15sad.
One could argue that because of the extreme symmetry

of these configurations their analytical determination could
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be obtained directly from the basic Eq.s1d. However, if this
is attempted, the intervortex distances are complicated to
handle. The moment method allows a more transparent ap-
proach to finding the values of the coordinates.
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