Dynamics of Vortex Line in Presence of Stationary Vortex

V.E. Zakharov

We study dynamics of infinitely thin vortex line of zero vorticity and unit local induction parameter in a velocity field created by infinitely thin stationary vortex line of vorticity q. If the shape of line is a one-valued function of vertical coordinate z, position of the moving vortex line is described by a complex function

$$
\Psi=\Psi(z, t) \quad \Psi=x+i y
$$

Function $\Psi(z, t)$ satisfies equation

$$
\begin{equation*}
\frac{\partial \Psi}{\partial t}=i\left(\frac{\partial}{\partial z} \frac{1}{\sqrt{1+\left|\Psi_{z}\right|^{2}}} \Psi_{z}+\frac{q}{\Psi}\right) \tag{1}
\end{equation*}
$$

If $q>0$, both vortices rotate in the same direction (co-rotating case); if $q<0$, vortices rotate in the opposite direction (anti-rotating case). If $q=0$, the moving vortex is free and Equation (1) is an integrable system equivalent to the focusing Nonlinear Schrodinger equation (NLSE).

Equation (1) is Hamiltonian

$$
\begin{equation*}
\frac{\partial \Psi}{\partial t}=i \frac{\delta H}{\partial \bar{\Psi}} \quad H=\int\left\{2(R-1)-q \ln \frac{|\Psi|^{2}}{\left|\Psi_{0}\right|^{2}}\right\} d z \tag{2}
\end{equation*}
$$

Here $R=\sqrt{1+\left|\Psi_{x}\right|^{2}}$. We assume that $|\Psi| \rightarrow\left|\Psi_{0}\right|^{2}$ at $z \rightarrow \infty$. Besides H, it has the following constants of motion

$$
\begin{aligned}
& N=\int\left(|\Psi|^{2}-\left|\Psi_{0}\right|^{2}\right) d z \\
& P=i \int\left|\Psi \bar{\Psi}^{\prime}-\bar{\Psi} \Psi^{\prime}\right| d z
\end{aligned}
$$

Equation (1) has helix-type exact solutions

$$
\begin{align*}
\Psi & =A e^{i k z-i \omega t} \tag{3}\\
\Omega & =\frac{k^{2}}{\sqrt{1+A^{2} k^{2}}}-\frac{q}{A^{2}}
\end{align*}
$$

Study of spiral stability with respect to small perturbation

$$
\Psi=A e^{i k z-i \omega t}\left(1+\delta A e^{-i \omega t+i p z}\right)
$$

leads to the following dispersion relation

$$
\begin{equation*}
\omega^{2}=\frac{p^{2}}{1+k^{2} A^{2}}\left\{\frac{p^{2}}{1+k^{2} A^{2}}-\frac{k^{4} A^{2}}{1+k^{2} A^{2}}+\frac{2 q}{A^{2}}\right\} \tag{4}
\end{equation*}
$$

If $q=0$, the spiral is unstable. This is nothing but modulational instability in the focusing NLSE. Also, the helix is unstable in the anti-rotating case $q<0$. In the co-rotating case, the spiral is stable if

$$
\frac{2 q}{A^{2}}>\frac{k^{4} A^{4}}{1+k^{2} A^{2}}
$$

In particulary, co-rotating straight vortex $k=0$ is stable. If $q<0$, such vortex is unstable; this is an analog of well-known Crow instability of a pair of anti-parallel vortices.

In the anti-rotating case, the development of helix instability leads to gluing of both vortices in a finite time. This process can be treated as reconnection of vortices. The final stage of this reconnection can be described by self-similar solution of equation (1):

$$
\begin{equation*}
\Psi=\left(t_{0}-t\right)^{1 / 2+i \nu(q)} \Phi\left(\frac{z}{\sqrt{t_{0}-t}}\right) \tag{5}
\end{equation*}
$$

Here $\nu(q)$ is a nonlinear eigenvalue to be found numerically.
In the co-rotating case, Equation (1) has a rich family of solitonic solutions, which stabilize at $z \rightarrow \infty$ to a stable spiral. Such solitonic solution can be sophisticated, in particulary, knotted. Their stability is not properly studied yet.

