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We study dynamics of infinitely thin vortex line of zero vorticity and unit
local induction parameter in a velocity field created by infinitely thin sta-
tionary vortex line of vorticity q. If the shape of line is a one-valued function
of vertical coordinate z, position of the moving vortex line is described by a
complex function

Ψ = Ψ(z, t) Ψ = x+ iy

Function Ψ(z, t) satisfies equation
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If q > 0, both vortices rotate in the same direction (co-rotating case); if
q < 0, vortices rotate in the opposite direction (anti-rotating case). If q = 0,
the moving vortex is free and Equation (1) is an integrable system equivalent
to the focusing Nonlinear Schrodinger equation (NLSE).

Equation (1) is Hamiltonian
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Here R =
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1 + |Ψx|2. We assume that |Ψ| → |Ψ0|2 at z → ∞. Besides H,
it has the following constants of motion
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Equation (1) has helix-type exact solutions

Ψ = Aeikz−iωt (3)
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Study of spiral stability with respect to small perturbation

Ψ = Aeikz−iωt
(
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)

leads to the following dispersion relation
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If q = 0, the spiral is unstable. This is nothing but modulational instability
in the focusing NLSE. Also, the helix is unstable in the anti-rotating case
q < 0. In the co-rotating case, the spiral is stable if
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In particulary, co-rotating straight vortex k = 0 is stable. If q < 0, such
vortex is unstable; this is an analog of well-known Crow instability of a pair
of anti-parallel vortices.

In the anti-rotating case, the development of helix instability leads to
gluing of both vortices in a finite time. This process can be treated as
reconnection of vortices. The final stage of this reconnection can be described
by self-similar solution of equation (1):

Ψ = (t0 − t)1/2+iν(q) Φ
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)
(5)

Here ν(q) is a nonlinear eigenvalue to be found numerically.
In the co-rotating case, Equation (1) has a rich family of solitonic solu-

tions, which stabilize at z → ∞ to a stable spiral. Such solitonic solution
can be sophisticated, in particulary, knotted. Their stability is not properly
studied yet.
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