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CHAOTIC STREAMLINES IN THE FLOW OF KNOTTED AND UNKNOTTED VORTICES

O.U. Velasco Fuentes
Departamento de Oceanografía Física, CICESE, Ensenada, México

Summary This paper describes the motion and the flow produced by a thin vortex filament lying on the surface of a torus.
The vortex filament progresses along and rotates about the symmetry axis of the torus in an almost steady manner, while
approximately preserving its shape. Streamlines are analysed in a frame moving with the vortex and it is found that they are
regular at small and large distances from the filament and chaotic at intermediate distances.

VORTEX EVOLUTION

In 1875 Kelvin [5] hypothesised that vortex filaments lying on the surface of a torus could exist as steady structures
and that they would be stable "provided only that the core is sufficiently thin." The existence of such solutions to
the Euler equations is still an open question, but in the so-called "localized induction approximation" such solutions
are known to exist [1] and to be either stable or to have slowly growing instabilities [3].
For analytical and numerical convenience, we use as initial condition a vortex filament of strengthΓ which is
uniformly coiled on a torus of radiusr0 and cross-sectionπr2

1. Therefore the filament is given, in Cartesian
coordinates, as follows:

x = (r0 + r1 cos φ) cos θ,

y = (r0 + r1 cos φ) sin θ,

z = r1 sin φ.

Hereφ is the angle around the torus’ centerline andθ is the angle around the torus’ symmetry axis. They are given
by φ = qs andθ = ps, wherep andq are integers ands is a parameter in the range0− 2π. Hence, before closing
on itself, the filamentTp,q makesp revolutions around the torus’ symmetry axis andq revolutions around the torus’
centerline. These numbers determine the topology of the vortex filament, as follows: whenp > 1, q > 1 (p, q
co-prime integers) the filament is a toroidal knot, when eitherp = 1 or q = 1 the filament is a toroidal unknot. In
the latter situation, however, it is useful to make a distinction between the casesp = 1 andq > 1 (toroidal helices)
andp > 1 andq = 1 (toroidal loops).
We compute the induced velocities with the Rosenhead-Moore approximation to the Biot-Savart law [4], and move
the filament forward in time with a fourth-order Runge-Kutta scheme with fixed time step. Since the filament
approximately preserves its shape, the number of nodes used to represent the filament is kept constant throughout
the simulations. All vortex filaments are observed to progress along the symmetry axis of the torus with an
approximately uniform speedU , and to rotate around this line with an approximately uniform angular speedΩ (an
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Figure 1. Drift U and rotationΩ of vortex filaments coiled on the surface of a torus. The left panel shows the evolution
of a toroidal helixT1,6 (the filament has volume to facilitate visualising the 3D shape and colour to mark position along the
filament). The right panel shows howU (squares) andΩ (circles) depend on the aspect ratio of the torus (r1/r0) in three cases:
a toroidal helixT1,6 (blue), a toroidal loopT2,1 (red), and a toroidal knotT2,3 (green).



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

0.5 1 1.5
−0.5

0

0.5

r

z

Figure 2. Left: “Streamlines” computed with the velocity component on a plane containing the torus’ centerline. Middle:
“Streamlines” computed with the velocity component on a meridional plane. Right panel: Poincaré section constructed plotting
the intersections of actual streamlines with a meridional plane (the colour identifies a particular streamline) . The black circles
represent the filament cross section.

example of a toroidal helical vortex is shown in the left panel of figure 1).U grows as the value ofp increases, but
is almost unaffected by the value ofq. Similarly, the magnitude ofΩ grows asq increases but is almost unaffected
by p. As the aspect ratio of the torus (r1/r0) increases the magnitude ofU decreases and that ofΩ increases
(see right panel of figure 1). The azimuthal speed that results from the rotation of toroidal helical vortices agrees
reasonably well with the progressive speed of cylindrical helical vortices [2].

FLOW GEOMETRY

If the aspect ratio of the supporting torus (r1/r0) is small, the velocity field of a toroidal vortex filament can be
considered as a perturbation of the velocity field of a circular vortex ring of radiusr0 and strengthpΓ. We must
thus first describe the flow geometry of the latter. A circular vortex ring moves with constant velocityU and, in
a reference frame fixed on the ring, there is always a set of closed stream surfaces. The surface with the largest
capacity is called separatrix, because the fluid contained within this surface is carried away by the vortex ring while
the fluid outside is not. The capacity of the separatrix increases asU decreases. The shape also changes: below
some critical value ofU the separatrix is a flattened spheroid; above that value it is a toroid (i.e. it is topologically
equivalent to a torus but its cross section is not a circle). In all cases, inside the separatrix there is an infinite set of
closed stream surfaces with the shape of toroids.
Perturbing this axially-symmetric, steady flow is analogous to perturbing a two-dimensional, steady flow. There-
fore the streamlines in the three-dimensional flow of the vortex filamentTp,q should have some characteristics in
common with particle trajectories in a time-periodic two-dimensional flow. This is indeed the case for the toroidal
helical vortexT1,6 shown in figure 2. The “streamlines” on a plane containing the torus’ centerline show a general
circulation around the symmetry axis (the sense, not indicated in the figure, is counter-clockwise), the “stream-
lines” on a meridional plane resemble the streamlines of a slow circular vortex ring (recall that the vortex filaments
Tp,q move at a lower speed than the equivalent circular vortex ring). Finally the Poincaré section shows that only
streamlines close to the filament core lie on a toroid, whereas the scattered points farther from the core indicate the
presence of chaotic streamlines.
A vortex filamentTp,q evolves with only small changes in shape; yet we expect that this perturbation will further
erode the closed stream surfaces and produce chaotic particle paths in larger flow regions. This is the subject of
current research.
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