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1. Abstract

A Von Kármán street (VKS) on the sphere consists of two symmetrically skewed closed rings,
each containing N evenly spaced vortices. We discuss both single and double von Kármán streets
on the sphere, with emphasis on their general solution, algebraic structure, statistical properties
and bifurcations in the streamline topology. For both the single and double Von Kármán streets,
the effect of adding vortices to the poles is studied. The system is posed as a problem in linear
algebra, where the vector Γ ∈ <M , describes the strengths of a system containing M vortices,
and is solved as a function of the configurations geometry, namely by the condition AΓ = 0. A is
non-square, and is referred to as the configuration matrix. The solution to Γ lies in the null space
of A, which is found using singular value decomposition (SVD). In addition, the Shannon entropy
is extracted from the singular value distribution and discussed for different configurations .

1.1. The Single Von Kármán Street: A single VKS contains one ring in the northern hemi-
sphere, and a second in the southern hemisphere, with the two having N vortices and the same
latitude φ from the poles. For any choice of N , except N = 3, the dimension of the solution of Γ
is one, with the vortices of the northern ring having equal and opposite strength to those of the
southern ring. For N = 3, the dimension of the solution of the system is 3, with one vortex in the
northern ring being equal and opposite to the vortex longitudinally spaced by π in the southern
ring. Adding pole vortices makes the dimension of the solution 3 for any N , but in order for the
vortex street to have rings with equal and opposite strength, the strength of the pole vortices must
be chosen to be ΓNP = −ΓSP ∈ <. A bifurcation study was performed by varying the strength
the pole vortices, and tracking the change in the streamline topology. The stagnation points are
key in describing the change in topology, and they move from the poles to the street vortices as the
magnitude of the pole vortices strength increases.

1.2. The Double Von Kármán Street: A double VKS consists of one VKS in the northern
hemisphere, and a second in the southern hemisphere. Using the SVD method, it was found that
the dimension of the null space for this system is one, see Figure 1. The outermost rings have equal
and opposite strength Γ, and are referred to as the φ1-rings. The strength of the two (equal and
opposite) inner rings, referred to as the φ2-rings, is ±αΓ, where α ∈ <. Since the vortex ring pairs
do not, in general, have equal and opposite strengths (α 6= 1), this system is not a classic double
VKS. A double VKS (α = 1) can be achieved by adding vortices at the north and south poles.
The dimension of the null space for the system with poles is 3. The additional dimensionality of
the solution comes from the pole vortices that have independent strengths ΓNP and ΓSP . Since
the pole vortices affect the strength of the street vortices, the poles can be chosen so to make the
constant α of Figure Figure 1 to be α = 1, thus achieving the double VKS shown in Figure 1.
The pole strengths must be equal and opposite with ΓNP = −ΓSP = βΓ, where the parameter
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Figure 1. Schematic diagrams of the single and double Von Kármán Streets on the sphere,

with an illustration of the general vortex solutions and vorticity vector J.

Figure 2. Examples of different streamline topologies found in the Single Von Kármán Street

(upper row) and Double Von Kármán Street (lower row).

β = β(φ1, φ2, N) ∈ < is a function of the configuration and the solution collapses into a one-
dimensional solution of the form Γ = Γ[1, ..., 1,−α, ...,−α, α, ..., α,−1, ...− 1, β,−β]T , where Γ has
length 4N + 2 with the ring vortices stacked from north to south and pole vortices placed at the
end of the state representation vector.

A bifurcation study was performed on the streamline topology by keeping φ1 constant while
varying the ratio φ1/φ2. The stagnation points follow a more complex path than in the case of a
single von Kármán street. They travel along the longitudes of the vortex streets, and on the equator.
The topology changes when either (1) stagnation points merge or split, or when (2) separatrices
merge or split.


