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Abstract

We present a model for the self-propulsion of a deforming hydrofoil in a planar ideal fluid. We begin with the equations of
motion for a deforming foil interacting with a system of point vortices and demonstrate that these equations possess a Hamilto-
nian structure. We add a mechanism by which new vortices can be added to the fluid near the trailing edge of the foil according
to a time-periodic Kutta condition, imparting thrust to the foil such that the total impulse in the system is conserved. Simulation
of the resulting equations reveals at least qualitative agreement with the observed dynamics of fishlike locomotion.

Introduction. Recent work by the authors and others has addressed two complementary problems in fluid-body interactions
from the standpoint of analytical mechanics. The self-propulsion of a deformable body in an ideal fluid devoid of vorticity is
treated as a problem in Lagrangian mechanics in [KM96, Kel98, KMRMH05], with the simplistic addition of liftlike forces due
to circulation described in [KH06]. Hamiltonian models for the interactions of free rigid bodies with discrete vortex structures
are presented, meanwhile, in [SMBK02, BMR03, SSKM08]. In the present paper, we merge these lines of research to provide
a model for the self-propulsion of a deformable body in a planar ideal fluid — specifically, a hydrofoil defined by a time-
varying conformal map — which is able to shed vorticity discretely from a single point on its surface in accordance with a
periodically applied Kutta condition. The shedding of each vortex is accompanied by the application of an impulsive force to
the hydrofoil in order to conserve the total impulse in the system. Between vortex shedding events, the equations of motion
possess a Hamiltonian structure which extends that underpinning the interaction of a free rigid body with a system of vortices.
Computational experiments with this model demonstrate its qualitative fidelity to the observed dynamics of a self-propelled
fishlike robot in the first author’s lab.

Foil Shapes and Complex Potentials. We model the contour of a hydrofoil with time-varying shape as the image of a circle
in the complex plane under a conformal map z = x+ iy = F(ζ) with time-varying parameters s j. We require the area within the
foil to remain constant in time to avoid an infinite term in the kinetic energy of the resulting fluid-foil system. We express the
dynamics of the moving foil relative to the foil-fixed z-frame. In between vortex shedding events, the flow resulting from the
motion of the foil and vortices — assuming the fluid to be at rest infinitely far away, and excluding small domains around the
the vortices themselves — is determined by a potential function of the form

W (z) = w(ζ) = Uw1(ζ)+V w2(ζ)+Ωw3(ζ)+∑
j

ṡ jws j(ζ)+∑
k

wvk(ζ),

where U and V are the x- and y-components of the foil’s translational velocity, Ω is its angular velocity, and the complex
potentials wvk represent the contributions of the vortices to the flow.

Conservation of Impulse Between Vortex Shedding Events. Relative to the foil-fixed frame, the total linear and angular
impulse in the fluid-foil system may be expressed in the form
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where s is the vector of shape parameters for the foil, γk and zk are the strength and location of the kth vortex, I(s) and B(s) are
matrices with appropriate dimensions, and the Kk are vectors. The motion of the foil is governed by Kirchhoff’s equations

(
d
dt

+ Ω̄×
)

L = 0,
dP
dt

+U×L = 0,

where Ω̄ = [0 0 Ω]T , L = [Ly Lx 0]T , P = [0 0 P]T , and U = [U V 0]T . The motion of the kth vortex is determined using Routh’s
rule [Saf92] such that

ζ̇k =

(
dWk

dz
− (U + iV + iΩzk)−∑

j

∂F
∂s j

ṡ j

)
1

F ′(ζk)
,

where Wk(z) = W (z)− iγk log(z− zk).
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Hamiltonian Structure. Observing that
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in the notation of [SMBK02], we may define the Hamiltonian function
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1
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when N wake vortices are present, where
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If µ = [Lx Ly P]T , then the motion of the foil is governed in between vortex shedding events by the Lie-Poisson equations

µ̇ = ad∗δH/δµµ

on se∗(2), while the positions of the vortices evolve such that
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∂xk
.

Vortex Shedding. We introduce new vortices to the wake near the trailing edge of the foil in simultaneous accord with
the conservation of impulse and the Kutta condition. This leaves flexibility in the way in which we select the (coupled)
position and strength of each new vortex. We provide a comparison of different methods for doing so in [XK], and settle on a
method described in [ST95] for the present discussion. According to this method, we situate each new vortex along a contour
interpolated from the trailing edge of the foil to the current position of the last vortex shed, and determine the strength of each
new vortex as a function of its initial position. Vortices shed at different times may have different strengths; the strength of each
shed vortex is assumed to remain constant thereafter. Enforcing the constraints described above, we introduce each vortex with
strength γk at the image of the point ζk such that

dw
dζ

∣∣∣∣
ζ=ζT

= 0,

where ζT is the preimage of the trailing edge of the foil under the transformation defining the foil’s shape, and such that

I(s)


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

+ γkKk(s,zk) = 0,

where ∆ refers to the impulsive change in the foil’s velocity as a result of shedding.

Simulation Results. Figure 1 shows results from two different simulations based on our model. The top row portrays the
acceleration from rest of a von Mises foil undulating according to periodic variations in two shape parameters. Wake vortices
are depicted in the snapshot on the left as tiny colored circles; red circles correspond to clockwise vortices and blue circles to
counterclockwise vortices. We observe the roll-up of wake vorticity into staggered coherent structures; over time these assume
the form of an inverse Kármán vortex street, consistent with experimental observations of the wakes trailing oscillating foils
[TT95]. The plot on the right compares the predicted x- and y-displacement of the foil-fixed frame over time to that which
would be measured were the mechanism for vortex shedding disabled (“ns”), underscoring the role played by vortex shedding
in thrust development. The bottom row depicts the execution of a snap turn by a Joukowski foil, the camber of which is varied
rapidly about zero through a single sinusoidal period, providing sufficient momentum for the foil to coast in an oblique direction
thereafter. In both cases, the model predicts behavior which is at least qualitatively consistent with that of a fishlike robot in the
first author’s lab. The authors are currently undertaking to validate the model more carefully using this robotic system.
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Figure 1: Simulation results. Top row: Forward acceleration from rest by an undulating von Mises foil shedding vortices.
Bottom row: Snap turn by a Joukowski foil executing aggressive changes in camber.
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