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Abstract
The transition to turbulence in pipe flow is a longstanding problem in fluid
dynamics. In contrast to many other transitions it is not connected with
linear instabilities of the laminar profile and hence follows a different route.
Experimental and numerical studies within the last few years have revealed
many unexpected connections to the nonlinear dynamics of strange saddles
and have considerably improved our understanding of this transition. The text
summarizes some of these insights and points to some outstanding problems in
areas where valuable contributions from nonlinear dynamics can be expected.

PACS numbers: 47.20.Ft, 47.20.−k

1. Introduction

The equations of fluid flow come naturally with a built in nonlinearity in the form of the
convective derivative and, hence, constitute a popular playground for applications of nonlinear
dynamical systems theory. This mutually beneficial relationship has figured prominently
in bifurcation theory, the routes to chaos and the development of nonlinear dynamics and
fluid mechanics in general, see, e.g., Chandrasekhar (1961), Drazin and Reid (1981) and
Koschmieder (1993). It is therefore appropriate to commemorate the 20th anniversary of
Nonlinearity by highlighting recent developments and open problems in an area that also has a
reason to celebrate an anniversary: 2008 marks the 125th anniversary of Osborne Reynolds’s
seminal papers (Reynolds 1883a, b) on the ‘conditions which determine whether the flow of
a fluid is sinuous’ in which he describes his observations on the intermittent transition to
turbulence in circular pipes (see Jackson and Launder (2007) for historical background on
Reynolds’ publications). Despite its long tradition and obvious practical relevance in many
engineering situations, there are many aspects of this transition that have puzzled scientists.
For instance, one might expect that after more than a century the ‘critical flow rate’, measured
by the dimensionless Reynolds number Re, for the transition to turbulence in pipe flow should
be firmly established. Instead, one finds in the literature Reynolds numbers which range
between 1000 (Prandtl and Tietjens 1931) and more than 3000. It turns out that this wide
range is a natural consequence of the intrinsic properties of the system, and directly linked to
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the presence of a chaotic saddle. In the following, I will summarize the work that has led to this
observation as well as several other key developments, and describe some open questions that
have emerged out of these investigations. More background information as well as more details
may be found in the recent reviews (Kerswell 2005, Eckhardt et al 2007) and the proceedings
(Mullin and Kerswell 2005).

The outline is as follows. In section 2 I will summarize a few experimental and theoretical
facts about pipe flow. Section 3 deals with coherent structures and section 4 with their
connections in state space. Section 5 discusses the issues connected with the observed
transience of turbulence. In section 6 we focus on the edge of chaos and in section 7 on
the minimal perturbations needed to trigger turbulence. The global dynamics in relation to the
localization of the turbulence in puffs is discussed in section 8. Finally, in section 9 we briefly
outline connections to other shear flows.

2. Observations and elementary properties

Pressure driven flow down a smooth circular pipe develops a parabolic velocity profile
sufficiently far from the inlet. In the usual dimensionless units one measures length in
units of the diameter D and velocities in units of the mean velocity U . From these and
the viscosity of the fluid ν one can form a dimensionless number, the Reynolds number
Re = UD/ν. Hydrodynamic similarity theory states that all flows with the same Reynolds
number, independent of flow speed or diameter of the pipe, behave in the same manner.

The unusual properties of the transition to turbulence in pipe flow are causally
connected to the fact that the parabolic profile is linearly stable against infinitesimal
perturbations (Salwen et al 1980, Brosa 1986, Meseguer and Trefethen 2003).
Experimentally, the laminar flow has been maintained for Reynolds numbers as high
as 100 000 (Pfenniger 1961). However, the operator obtained after linearizing the
Navier–Stokes equation around the laminar profile is not normal, and perturbations
can temporarily extract energy from the laminar flow and be amplified, before finally
decaying (Boberg and Brosa 1988, Reddy et al 1993, Trefethen et al 1993, Waleffe 1995,
Henningson 1996, Schmid and Henningson 1999, Grossmann 2000, Jachens et al 2006,
Kim and Moehlis 2006). This has led (Meseguer and Trefethen 2003) to suggest that for
Reynolds numbers in excess of 107 the transient amplification is so strong that both
experimentally and numerically it becomes practically impossible to control the perturbations
and to prevent the transition.

In view of the linear stability, the transition to turbulence requires finite amplitude
perturbations. These can derive from perturbations present in the reservoir or triggered
in the inflow region and then swept into the pipe. A typical experiment shows an
intermittent variation between laminar and turbulent domains which move downstream
(for experimental demonstrations on the original apparatus used by Reynolds, see the
images provided by Homsy et al (2004) or Eckhardt et al (2007); for time traces, see
Rotta (1956)). For controlled experiments one turns to controlled perturbations, such as
pressure pulses from loudspeakers (Wygnanski et al 1975), jets of fluids injected into the pipe
(Darbyshire and Mullin 1995) or devices such as the iris diaphragm (Durst and Ünsal 2006)
that temporarily blocks the flow. For sufficiently low Reynolds numbers these perturbations
decay as they are swept downstream and do not recover. For Reynolds numbers up to about
2700, the perturbations develop into localized patches of about 30D lengths which move
downstream with a speed close to but not identical to the mean velocity: this implies that there
is a continuous flux of liquid through the patch. Interestingly, these patches keep their length.
For higher Reynolds number, the upstream and downstream fronts move with different speeds
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and the localized patches spread out along the pipe axis. These structures are called puffs
and slugs, respectively, and are discussed extensively in Wygnanski and Champagne (1973),
Wygnanski et al (1975). Almost all the discussions here concern Reynolds numbers below
about 3000 and the dynamics in puffs.

From a mathematical perspective, the problem is the characterization of an initial value
problem for a non-linear, non-local partial differential equation, the Navier–Stokes equation.
The temporal evolution of a velocity field u(x, t) obeys

∂tu + (u · ∇)u = −∇p + ν�u (1)

together with the incompressibility condition

∇ · u = 0 (2)

and appropriate boundary conditions. Taking the divergence of the Navier–Stokes equation (1)
gives a Poisson equation for the pressure,

�p = −∇ · ((u · ∇)u), (3)

which results in a non-local dependence on the velocity gradients. The boundary conditions are
that the fluid velocity vanishes at the walls. In the axial direction periodic boundary conditions
are often used. A first question, worthy of a million USD in bounty, concerns the smoothness
of solutions starting from smooth initial conditions for all times (see Feffermann (2000) for the
prize question and Doering and Gibbon (1995) for some background information). Should it
be possible to arrive at singularities in finite times, then numerical representations on finite-
dimensional truncations of spaces of basis function become of dubious quality. In the absence
of any positive evidence for singularities we will assume that the numerical representations
are acceptable, modulo the usual issue of sufficient resolution of the fine scales.

3. Lowest Reynolds number for coherent structures

A persistent turbulent dynamics requires in its state space the presence of persistent structures
other than the laminar profile. While there are examples of dynamical systems without periodic
orbits, the most likely candidates for such persistent structures are some forms of periodic
motions. Perhaps the simplest form is travelling waves, where a certain velocity field moves
downstream without changing its form, uTW(x, t) = u0(x − cezt). More complicated ones
have a periodic or quasi-periodic time-dependence and or come in the form of helical waves
where a translation in time and a translation in the downstream or azimuthal direction are
coupled (so-called relative periodic states). The method of choice for converging such states is
the Newton method, combined with various methods for obtaining good initial conditions, see
Faisst and Eckhardt (2003) and Wedin and Kerswell (2004) for pipe flow and Nagata (1990),
Clever and Busse (1997), Waleffe (1998, 2001, 2003) and Viswanath (2007b) for other flows.

For pipe flow, the nontrivial states that were identified first are families of
coherent structures with symmetric arrangements of vortices (Faisst and Eckhardt 2003,
Wedin and Kerswell 2004) (figure 1). More recently, asymmetric states, still of the travelling
wave type, have been identified (Pringle and Kerswell 2007). Secondary bifurcations of the
Hopf type can then lead to the creation of periodic orbits. The critical Reynolds number at
which the first symmetric structures appear is around 1250, that for the asymmetric states
around 770. The question that derives from this observation is

Question 1. Are there any persistent coherent states, of travelling wave or more complicated
types, with Reynolds numbers below 770?
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That the lowest coherent states can be more complicated than fixed points or travelling
waves (which are essentially fixed points in a comoving frame of reference) can be seen in
studies of low-dimensional dynamical system for shear flows, where the states that extend to
the lowest Reynolds numbers are indeed periodic ones, with fixed points appearing at much
higher Reynolds numbers only (Moehlis et al 2004, 2005). On the other hand, this may be
a resolution effect, since the low-dimensional model is most closely related to plane Couette
flow, and there the lowest lying states are, as far as we know, again of the fixed point type
(Nagata 1990, Clever and Busse 1997, Waleffe 2003).

We do know from the study of the energy balance that for Reynolds numbers below about
80, all perturbations decay monotonically in energy (Joseph 1975). This then provides a lower
bound. While it may be difficult to prove the existence of states, it might be possible to
prove the absence of any by establishing an asymptotic decay for higher Reynolds numbers,
following ideas from control theory (Hinrichsen et al 2004). The inverse question then is

Question 2. What is the maximal Reynolds number below which no coherent states can exist?

As a warm-up to this problem, it might be useful to address the related question in low-
dimensional models (Eckhardt and Mersmann 1999, Moehlis et al 2004), where the problem
is one of ordinary differential equations with quadratic nonlinearities, and where perhaps
methods like Groebner bases can be put to good use.

4. Restructuring state space

Independent of whether the first coherent states appear at a Reynolds number of 770
or lower, it is an intriguing fact that experimental and numerical observations fail
to come up with a somewhat longer lived turbulent dynamics for Reynolds numbers
below about 1700 (Darbyshire and Mullin 1995, Hof 2004, Mullin and Peixinho 2006,
Peixinho and Mullin 2006). Thus, while all the prerequisites for turbulence exist, the flow
fails to show turbulence in any substantial manner. This suggests the following question:

Question 3. What happens in state space between the appearance of the first coherent structures
and the experimental observation of turbulence?

The problem could be a qualitative one, in that the first states that appear are isolated
and not sufficiently connected to maintain turbulent dynamics, so that observing turbulence
requires a global bifurcation which then links different structures to form a noticeable attractor.
The problem could also be simply a quantitative one, in that the structures form soon after the
first bifurcations, and in a localized region in state space, and then simply grow and spread
until they are sufficiently volume filling to be noticeable. Most likely, the answer to the
problems involves a combination of both. One approach to addressing this problem requires
the tracking of stable and unstable manifolds of coherent structures, as done for plane Couette
flow by Gibson et al (2007).

An aspect of the restructuring is the observation that all states found in pipe flow so far
are unstable, which means that they cannot be observed as permanent structures. However,
it is possible to observe these states transiently in experiment and numerics (Hof et al 2004,
Kerswell and Tutty 2007, Schneider et al 2007, Eckhardt et al 2008). The theory of chaotic
systems holds that the frequency with which these states or more complicated ones appear is
related to their instability (Cvitanovic and Eckhardt 1991, Eckhardt and Ott 1994).

Question 4. Can the frequency with which travelling waves or other coherent structures appear
be related to their stability?
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Figure 1. Examples of coherent structures in pipe flow. The profiles are obtained by averaging
along the axis in order to highlight the symmetry. The arrows indicate the velocity in the cross
section and the colour codes the downstream velocity relative to the parabolic profile. In the red
regions the flow is faster than the parabola with the same mean flux, in the blue regions it is slower.
From Faisst and Eckhardt (2003).

Figure 2. The energy traces in a turbulent section as a function of time show turbulent dynamics
followed by a decay back to the laminar profile. When collected over many initial conditions,
exponential distributions of lifetimes result (middle). The characteristic lifetimes increase rapidly
with Reynolds number (right).

The studies (Kerswell and Tutty 2007, Schneider et al 2007) are a first step in this
direction, fall short of establishing the quantitative relations between the frequency with which
they appear in the observed signals and the stability of the identified objects.

5. Transient turbulence

Very often, turbulent dynamics is associated with the formation of an attractor: then the
dynamics would be persistent, chaotic, with an invariant measure and many other nice features.
Long ago, Brosa (1989) noticed that all his numerical runs returned to the laminar profile when
followed long enough, and took the bold step to conclude that this was not specific to his
numerics but an intrinsic property of turbulence: he suggested that all turbulence in pipe flow
was transient (figure 2(a) has a modern version of this observation).

Interestingly, all numerical and experimental studies so far (Faisst and Eckhardt 2004,
Mullin and Peixinho 2005, Hof et al 2006, Mullin and Peixinho 2006, Peixinho and Mullin
2006, 2007, Wilis and Kerswell 2007) agree that the lifetimes of turbulent pipe flow are
exponentially distributed, so that the probability of still being turbulent after a time t is
P(t) ∼ exp(−t/τ ) for large t , with a characteristic time τ(Re) (figure 2(b)). The similarity
sign indicates that this is only true for long times, and that certain short time transients
have to be excluded (Hof et al 2007, Schneider 2007). Such behaviour is consistent with
that expected for a chaotic saddle (Kadanoff and Tang 1984, Kantz and Grassberger 1985,
Tél 1991).

The variation of the characteristic time with Reynolds number is an important and
much debated subject. A transition from a chaotic saddle to a turbulent attractor
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would require some form of boundary crisis (Grebogi et al 1983) at which point τ(Re)

diverges. Some measurements and numerical simulations are in agreement with this
expectation (Faisst and Eckhardt 2004, Mullin and Peixinho 2006, Peixinho and Mullin 2006,
Willis and Kerswell 2007). Other studies (Hof et al 2006, Schneider 2007) suggest that
τ(Re) increases rapidly and present evidence that τ(Re) increases exponentially (figure 2(c)).
These latter studies are based on several different experimental setups and are consistent with
numerical studies for long pipes and long observation times (Schneider 2007). The very fact
that there can be a dispute about the variations of lifetimes with Reynolds number shows that
the presence (or absence) of an attractor in pipe flow at sufficiently high Reynolds numbers
cannot be answered as easily as one might have expected.

Question 5. Is turbulence in pipe flow transient for all Reynolds numbers or is there a crisis
bifurcation to an attractor? If there is no crisis, how rapidly does the lifetime increase with
Reynolds number?

More computer power and additional experimental efforts will most likely re-
duce the statistical uncertainty and provide better data for the Reynolds number de-
pendence τ(Re). In particular, they might indicate a different dependence on Re,
just as other dynamical systems show a variety of variations of lifetimes with param-
eters (see, e.g., Crutchfield and Kaneko (1988), Kaneda (1990), Lai and Winslow (1995),
Braun and Feudel (1996), Goren et al (1998), Rempel and Chian (2003)). It would also be
helpful to find other indicators for the presence or absence of the boundary crisis, for instance
in the dynamics of the edge state (see below), or in the fluctuations of the energy or dissipation
rate. However, a definite answer to the appearance of an attractor requires constructive criteria
for the identification of the necessary global bifurcation. But even then the turbulence need
not be persistent, since spontaneous, noise-induced transitions between the two coexisting
attractors could cause a relaminarization (Lagha and Manneville 2007, Schoepe 2004).

6. Edge of chaos

In the case of two coexisting attractors, there are basins and boundaries which separate the
basins. If the turbulence is only transient, the turbulent dynamics connects to the laminar one,
and there can be no basin boundary dividing state space into a turbulent and a laminar region.
Hence, the concept of the dividing surface between the two regions has to be reconsidered and
suitably generalized (Schneider and Eckhardt 2006, Skufca et al 2006, Schneider et al 2007,
Vollmer et al 2007). Starting from the properties of the saddle state in a saddle-node
bifurcation, one can use the lifetimes of perturbations, i.e. the time it takes to relax to the laminar
profile, as an indicator: approaching the stable manifold from the laminar side of the saddle,
the lifetime increases, reaches infinity and stays there, if the state on the other side is attracting.
If the state on the other side is transient, there will be wild variations in lifetimes from one
initial condition to a nearby one (Schmiegel and Eckhardt 1997, Faisst and Eckhardt 2004).
Therefore, we denoted this point the ’edge of chaos’ (Skufca et al 2006). All edge points
seem to be connected in state space.

A second observation concerns the connections between edge points and the
dynamics in the edge of chaos: numerical studies show an evolution towards a relative
attractor, see Skufca et al (2006) for a model study, Schneider and Eckhardt (2006) and
Schneider et al (2007) for pipe flow and Itano and Toh (2001), Toh and Itano (2003) and
Viswanath (2007a) for other flows. A two-dimensional map can be used to characterize some
of these properties, including possible bifurcations in the edge state and the appearance of
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chaos (Vollmer et al 2007). Most intriguingly, there is a possibility that this boundary can be
fractal or not, depending on the ratio of two Lyapunov exponents.

Question 6. What are the properties of the edge of chaos and the invariant state within the
edge? Is the edge of chaos a global relative attractor or are there additional attractors in the
edge of chaos?

The models in Vollmer et al (2007) can easily be extended to cover multiple attractors in
the edge, as observed in the model studied in Skufca et al (2006), but it would be nice to have
an example in a realistic flow.

7. Minimal perturbations

In cases in which the laminar profile is stable, a finite perturbation is required to trigger
turbulence. Experiments and the observations on non-normal amplification of perturbations
show that the flow becomes increasingly sensitive to perturbations as the Reynolds number
increases (Hof et al 2003). This suggests that the diameter of the basin of attraction of the
laminar profile decreases with increasing Reynolds number. While there are results that
suggest that the boundary contracts like 1/Re ((Hof et al 2003, Mellibovsky and Meseguer
2007) and, for low Re, figure 3), some experiments and numerics find steeper decays
(Mellibovsky and Meseguer 2006, Peixinho and Mullin 2007, Philip et al 2007).

Question 7. How does the amplitude of the minimal perturbation required to trigger turbulence
decay with Reynolds number?

To approach this question, one may look for minimal variations in the laminar profile which
turn it unstable (Gavarini et al 2004), or for optimal 3d perturbations which trigger turbulence:
(Ben-Dov and Cohen 2007) find a global minimum in energy norm for triggering secondary
instabilities. It is also possible to study the scaling of the invariant state in the edge or perhaps
of other relevant coherent states with Reynolds number. This is facilitated by the observation
that the states do not become more complex with Re (Schneider 2007, Wang et al 2007). In
simple models they can dominate the size of the basins (Eckhardt and Lathrop 2006), but here
there is evidence that they maintain a finite distance from the laminar profile as Re → ∞
(Wang et al 2007):

Question 8. Can one characterize the Re → ∞ limit of coherent structures? Do the solutions
approach the laminar profile or do some of them keep a finite distance for large Re?

If the states keep a finite distance from the laminar profile then the reduction in the basin
of attraction of the laminar profile has to come from a scaling of the stable manifolds. Such a
connection would also fit with the observations of kinks and folds in the edge (figure 3), which
are typical for stable manifolds.

8. Turbulent spot dynamics

The coherent structures described earlier provide a convenient means for describing the
dynamics in a finite section of the pipe with periodic boundary conditions. This,
however, covers only one aspect of the dynamics, in that the experimentally induced
turbulence is usually a localized one, confined to a domain of about 30D in length
(Wygnanski and Champagne 1973, Wygnanski et al 1975) (see figure 4). If a shorter turbulent
region is induced, it grows until it reaches this length; if a longer one is induced it either shrinks
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Figure 3. The boundary between laminar and turbulent (left) for a specific perturbation and
the scaling of the boundary with Reynolds number. The insets on the right show modulations
in the scaling curve connected with the folds on the left. The ordinate gives the amplitude of
the perturbation (left) and the amplitude renormalized by the Reynolds number (right). From
Schneider et al (2007).

Figure 4. Three snapshots of a turbulent flow in a pipe at Re = 1825, moving from left to right.
The snapshots are separated in time by 20D/ucl with ucl the centreline velocity. The red and blue
regions indicate isosurfaces of downstream velocities somewhat faster or slower than the parabolic
laminar profile. The aspect ratio is not shown to scale: the pipe is 50 diameters long.

or breaks up into two shorter ones which again grow to be 30D long (Hof 2004). Therefore,
there is considerable robustness in the turbulent dynamics of spots:

Question 9. For Reynolds numbers below about 2700, the turbulence in a long pipe comes in
the form of localized puffs. How is the dynamics of the puffs, their length selection and their
boundary dynamics connected to the periodic coherent structures?

As a first step towards describing localized turbulence one can imagine some sort of
Ginzburg–Landau type model for the dynamics of an envelope of the turbulent region, as in
Prigent et al (2002), but this is unsatisfactory unless the equations and their coefficient can be
derived from the underlying Navier–Stokes dynamics. It is interesting to note that a similar
localization phenomenon can be studied in plane Couette flow (Barkley and Tuckerman 2005).

9. Final remarks

The discussion in the preceding section has focussed on pipe flow, but the occasional references
to results for other flow show that there are several other related problems. One is plane Couette
flow between parallel plates in relative motion, where the laminar profile is also linearly
stable for all Reynolds numbers (Dauchot and Daviaud 1994, 1995, Kreiss et al 1994,
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Bottin et al 1998, Schmiegel and Eckhardt 1997, Dauchot and Vioujard 2000). Pressure
driven flow between parallel plates, plane Poiseuille flow, has a parabolic profile and a curious
linear instability at Reynolds numbers near 5772. However, turbulence is observed at Reynolds
numbers of about 1000, and hence can follow a mechanism similar to the ones described
here. For instance, there are travelling waves in these flows (Ehrenstein and Koch 1991,
Waleffe 1998, 2001). The flow between rotating concentric cylinders, Taylor–Couette flow,
is a closed flow geometry where a stable laminar profile and a turbulent dynamics coexist
(Faisst and Eckhardt 2000, Hristova et al 2002). At present there seem to be many similarities
and connections between these flows, suggesting that these flows follow the same route to
turbulence.

The ultimate challenge is to understand the full hydrodynamic flow and hence
the properties of the Navier–Stokes equation. But it is good to know that for the
development and test of ideas there are models on different levels of complexity, from
ordinary differential equations with varying numbers of degrees of freedom to simplified
partial differential equations, see, e.g. Waleffe (1997), Brosa and Grossmann (1999),
Eckhardt and Mersmann (1999), Manneville and Locher (2000), Moehlis et al (2004, 2005),
Smith et al (2005) and Lagha and Manneville (2007).

Osborne Reynolds motivated his study not only with the obvious practical relevance of
pipe flow but also with his interest in the nature of the transition. He could not have anticipated
that while he was among the first to describe a transition in detail, his example would be
among the last to be explained. But in hindsight it is clear that any serious explanation of the
transition to turbulence in pipe flow requires quite a bit of nonlinear dynamics. Fortunately
for dynamical systems theory, the transition in pipe flow is not only at the receiving end: the
complexity of the edge state and the intriguing possibilites for the connections between the
different states in the high-dimensional state space can be expected to stimulate nonlinear
dynamics of high-dimensional systems as well.
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