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Caflisch and Kaneda derived the evolution equation for vortex sheet motion in 3D flow [1, 2].
The sheet is a parametrized surface, x(a, 3, t), with Lagrangian parameters «, 5 and time ¢, and
the equation has the form

2m rl ~
d,x :/O [ Ki(x,%) x dT, (1)

where T'(a, 3) is the vector-valued circulation. We use a regularized Biot-Savart kernel,

% —

Ks(x,y) = _47T(|X—y|2y+ §2)3/2’ (2)
where ¢ is a smoothing parameter. The poster will describe a new Lagrangian panel method for
tracking the sheet surface [3]. The sheet is represented by a set of quadrilateral panels having a
quadtree structure. The panels have active particles that carry circulation and passive particles
for adaptive refinement. The velocity is evaluated by a treecode [4]. The method was applied to
compute the azimuthal instability of a vortex ring [3]. Figure 1 plots the results at t = 0,4, 8.
Initially the sheet is a circular disk with an azimuthal perturbation. The edge of the sheet rolls
up into a spiral, effectively forming a vortex ring. To help visualize the core dynamics, a set of
material lines was tracked in the flow induced by the vortex sheet; these are the colored lines in
rows 3 and 4 of Figure 1. The motion of the green lines indicates local axial flow, a feature seen
in experiments by Naitoh et al. [5]. At late times a sequence of dipoles is being ejected from the
main ring structure, another feature possibly seen in experiments by Dazin et al. [6].
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Figure 1: Azimuthal instability of a vortex ring computed by a vortex sheet panel method [3],
t = 0,4,8 (left to right). row 1: computational panels; row 2: vorticity isosurfaces; row 3: a
black material line tracks the vortex core, blue and red material lines roll up around the core;
row 4: (top view) blue and red material lines stay in their initial plane while green material lines
move out of their initial plane, an indication of local axial flow, a feature seen in experiments
by Naitoh et al. [5]. At late times a sequence of dipoles is being ejected from the main ring
structure, another feature possibly seen in experiments by Dazin et al. [6].



